1 Γραμμική παλινδρόμηση

Στην παρούσα υποενότητα θα χρησιμοποιήσουμε δεδομένα του OECD για τον αριθμό των γιατρών και των νοσοκόμων ανά χίλιους κατοίκους (βλ. εδώ κι εδώ). Αυτά αποθηκεύτηκαν στα αρχεία doctorsPer1000.csv και nurcesPer1000.csv. Εδώ παραθέτουμε τα 100 πρώτα στοιχεία κάθε πίνακα, για λόγους ταχύτητας εκτέλεσης του κώδικα. Φυσικά, πρώτα διαγράψαμε τις μεταβλητές της προηγούμενης ενότητας:

rm(list = ls())
  • doctorsPer1000.csv
LOCATION INDICATOR SUBJECT MEASURE FREQUENCY TIME Value Flag.Codes
AUS MEDICALDOC TOT 1000HAB A 1961 1.13 NA
AUS MEDICALDOC TOT 1000HAB A 1964 1.23 NA
AUS MEDICALDOC TOT 1000HAB A 1965 1.22 NA
AUS MEDICALDOC TOT 1000HAB A 1966 1.23 NA
AUS MEDICALDOC TOT 1000HAB A 1967 1.26 NA
AUS MEDICALDOC TOT 1000HAB A 1968 1.24 NA
AUS MEDICALDOC TOT 1000HAB A 1969 1.26 NA
AUS MEDICALDOC TOT 1000HAB A 1970 1.33 NA
AUS MEDICALDOC TOT 1000HAB A 1971 1.26 NA
AUS MEDICALDOC TOT 1000HAB A 1972 1.38 NA
AUS MEDICALDOC TOT 1000HAB A 1973 1.35 NA
AUS MEDICALDOC TOT 1000HAB A 1974 1.42 NA
AUS MEDICALDOC TOT 1000HAB A 1975 1.48 NA
AUS MEDICALDOC TOT 1000HAB A 1976 1.64 NA
AUS MEDICALDOC TOT 1000HAB A 1977 1.65 NA
AUS MEDICALDOC TOT 1000HAB A 1978 1.85 NA
AUS MEDICALDOC TOT 1000HAB A 1979 1.78 NA
AUS MEDICALDOC TOT 1000HAB A 1980 1.85 NA
AUS MEDICALDOC TOT 1000HAB A 1981 1.86 NA
AUS MEDICALDOC TOT 1000HAB A 1982 1.90 NA
AUS MEDICALDOC TOT 1000HAB A 1983 1.95 NA
AUS MEDICALDOC TOT 1000HAB A 1984 1.83 B
AUS MEDICALDOC TOT 1000HAB A 1985 1.91 NA
AUS MEDICALDOC TOT 1000HAB A 1986 2.01 NA
AUS MEDICALDOC TOT 1000HAB A 1987 2.06 NA
AUS MEDICALDOC TOT 1000HAB A 1988 2.10 NA
AUS MEDICALDOC TOT 1000HAB A 1989 2.14 NA
AUS MEDICALDOC TOT 1000HAB A 1990 2.17 NA
AUS MEDICALDOC TOT 1000HAB A 1991 2.33 B
AUS MEDICALDOC TOT 1000HAB A 1992 2.37 NA
AUS MEDICALDOC TOT 1000HAB A 1993 2.40 NA
AUS MEDICALDOC TOT 1000HAB A 1994 2.44 NA
AUS MEDICALDOC TOT 1000HAB A 1995 2.48 NA
AUS MEDICALDOC TOT 1000HAB A 1996 2.40 NA
AUS MEDICALDOC TOT 1000HAB A 1997 2.40 NA
AUS MEDICALDOC TOT 1000HAB A 1998 2.40 NA
AUS MEDICALDOC TOT 1000HAB A 1999 2.45 NA
AUS MEDICALDOC TOT 1000HAB A 2000 2.49 NA
AUS MEDICALDOC TOT 1000HAB A 2001 2.56 NA
AUS MEDICALDOC TOT 1000HAB A 2002 2.56 NA
AUS MEDICALDOC TOT 1000HAB A 2003 2.63 NA
AUS MEDICALDOC TOT 1000HAB A 2004 2.71 NA
AUS MEDICALDOC TOT 1000HAB A 2005 2.78 NA
AUS MEDICALDOC TOT 1000HAB A 2006 2.84 NA
AUS MEDICALDOC TOT 1000HAB A 2007 3.01 NA
AUS MEDICALDOC TOT 1000HAB A 2008 3.02 NA
AUS MEDICALDOC TOT 1000HAB A 2009 3.12 NA
AUS MEDICALDOC TOT 1000HAB A 2011 3.32 NA
AUS MEDICALDOC TOT 1000HAB A 2012 3.31 E
AUS MEDICALDOC TOT 1000HAB A 2013 3.37 NA
AUS MEDICALDOC TOT 1000HAB A 2014 3.45 E
AUS MEDICALDOC TOT 1000HAB A 2015 3.51 E
AUS MEDICALDOC TOT 1000HAB A 2016 3.58 E
AUS MEDICALDOC TOT 1000HAB A 2017 3.68 E
AUS MEDICALDOC TOT 1000HAB A 2018 3.75 E
AUS MEDICALDOC TOT 1000HAB A 2019 3.83 E
AUS MEDICALDOC TOT 1000HAB A 2020 3.91 E
AUS MEDICALDOC TOT 1000HAB A 2021 4.02 E
AUT MEDICALDOC TOT 1000HAB A 1960 1.59 NA
AUT MEDICALDOC TOT 1000HAB A 1961 1.58 NA
AUT MEDICALDOC TOT 1000HAB A 1962 1.57 NA
AUT MEDICALDOC TOT 1000HAB A 1963 1.56 NA
AUT MEDICALDOC TOT 1000HAB A 1964 1.56 NA
AUT MEDICALDOC TOT 1000HAB A 1965 1.56 NA
AUT MEDICALDOC TOT 1000HAB A 1966 1.57 NA
AUT MEDICALDOC TOT 1000HAB A 1967 1.58 NA
AUT MEDICALDOC TOT 1000HAB A 1968 1.60 NA
AUT MEDICALDOC TOT 1000HAB A 1969 1.63 NA
AUT MEDICALDOC TOT 1000HAB A 1970 1.67 NA
AUT MEDICALDOC TOT 1000HAB A 1971 1.70 NA
AUT MEDICALDOC TOT 1000HAB A 1972 1.71 NA
AUT MEDICALDOC TOT 1000HAB A 1973 1.76 NA
AUT MEDICALDOC TOT 1000HAB A 1974 1.81 NA
AUT MEDICALDOC TOT 1000HAB A 1975 1.87 NA
AUT MEDICALDOC TOT 1000HAB A 1976 1.95 NA
AUT MEDICALDOC TOT 1000HAB A 1977 2.01 NA
AUT MEDICALDOC TOT 1000HAB A 1978 2.07 NA
AUT MEDICALDOC TOT 1000HAB A 1979 2.14 NA
AUT MEDICALDOC TOT 1000HAB A 1980 2.21 NA
AUT MEDICALDOC TOT 1000HAB A 1981 2.27 NA
AUT MEDICALDOC TOT 1000HAB A 1982 2.33 NA
AUT MEDICALDOC TOT 1000HAB A 1983 2.42 NA
AUT MEDICALDOC TOT 1000HAB A 1984 2.50 NA
AUT MEDICALDOC TOT 1000HAB A 1985 2.57 NA
AUT MEDICALDOC TOT 1000HAB A 1986 2.67 NA
AUT MEDICALDOC TOT 1000HAB A 1987 2.70 NA
AUT MEDICALDOC TOT 1000HAB A 1988 2.80 NA
AUT MEDICALDOC TOT 1000HAB A 1989 2.90 NA
AUT MEDICALDOC TOT 1000HAB A 1990 3.01 NA
AUT MEDICALDOC TOT 1000HAB A 1991 3.09 NA
AUT MEDICALDOC TOT 1000HAB A 1992 3.21 NA
AUT MEDICALDOC TOT 1000HAB A 1993 3.30 NA
AUT MEDICALDOC TOT 1000HAB A 1994 3.41 NA
AUT MEDICALDOC TOT 1000HAB A 1995 3.51 NA
AUT MEDICALDOC TOT 1000HAB A 1996 3.58 NA
AUT MEDICALDOC TOT 1000HAB A 1997 3.66 NA
AUT MEDICALDOC TOT 1000HAB A 1998 3.77 NA
AUT MEDICALDOC TOT 1000HAB A 1999 3.77 NA
AUT MEDICALDOC TOT 1000HAB A 2000 3.85 NA
AUT MEDICALDOC TOT 1000HAB A 2001 3.96 NA
  • nurcesPer1000.csv
LOCATION INDICATOR SUBJECT MEASURE FREQUENCY TIME Value Flag.Codes
AUS NURSE TOT 1000HAB A 1980 10.33 NA
AUS NURSE TOT 1000HAB A 1981 9.91 NA
AUS NURSE TOT 1000HAB A 1982 9.85 NA
AUS NURSE TOT 1000HAB A 1983 9.87 NA
AUS NURSE TOT 1000HAB A 1984 9.91 NA
AUS NURSE TOT 1000HAB A 1985 9.55 NA
AUS NURSE TOT 1000HAB A 1986 10.92 B
AUS NURSE TOT 1000HAB A 1987 11.37 NA
AUS NURSE TOT 1000HAB A 1988 11.60 NA
AUS NURSE TOT 1000HAB A 1989 11.72 NA
AUS NURSE TOT 1000HAB A 1990 11.63 NA
AUS NURSE TOT 1000HAB A 1991 12.08 NA
AUS NURSE TOT 1000HAB A 1992 11.57 NA
AUS NURSE TOT 1000HAB A 1993 11.10 B
AUS NURSE TOT 1000HAB A 1994 11.50 NA
AUS NURSE TOT 1000HAB A 1995 10.84 NA
AUS NURSE TOT 1000HAB A 1996 10.83 NA
AUS NURSE TOT 1000HAB A 1997 10.41 B
AUS NURSE TOT 1000HAB A 1998 10.30 NA
AUS NURSE TOT 1000HAB A 1999 10.17 NA
AUS NURSE TOT 1000HAB A 2000 10.07 NA
AUS NURSE TOT 1000HAB A 2001 9.95 NA
AUS NURSE TOT 1000HAB A 2002 9.94 NA
AUS NURSE TOT 1000HAB A 2003 9.94 NA
AUS NURSE TOT 1000HAB A 2004 10.21 NA
AUS NURSE TOT 1000HAB A 2005 9.76 NA
AUS NURSE TOT 1000HAB A 2007 10.20 NA
AUS NURSE TOT 1000HAB A 2008 10.30 NA
AUS NURSE TOT 1000HAB A 2009 10.18 NA
AUS NURSE TOT 1000HAB A 2011 10.19 NA
AUS NURSE TOT 1000HAB A 2012 10.22 E
AUS NURSE TOT 1000HAB A 2013 11.12 NA
AUS NURSE TOT 1000HAB A 2014 11.28 E
AUS NURSE TOT 1000HAB A 2015 11.39 E
AUS NURSE TOT 1000HAB A 2016 11.57 E
AUS NURSE TOT 1000HAB A 2017 11.69 E
AUS NURSE TOT 1000HAB A 2018 11.93 E
AUS NURSE TOT 1000HAB A 2019 12.23 E
AUS NURSE TOT 1000HAB A 2020 12.28 E
AUS NURSE TOT 1000HAB A 2021 12.81 E
AUT NURSE TOT 1000HAB A 1985 3.41 D
AUT NURSE TOT 1000HAB A 1986 3.56 D
AUT NURSE TOT 1000HAB A 1987 3.69 D
AUT NURSE TOT 1000HAB A 1988 3.67 D
AUT NURSE TOT 1000HAB A 1989 3.82 D
AUT NURSE TOT 1000HAB A 1990 3.91 D
AUT NURSE TOT 1000HAB A 1991 4.02 D
AUT NURSE TOT 1000HAB A 1992 4.19 D
AUT NURSE TOT 1000HAB A 1993 4.43 D
AUT NURSE TOT 1000HAB A 1994 4.75 D
AUT NURSE TOT 1000HAB A 1995 4.95 D
AUT NURSE TOT 1000HAB A 1996 5.06 D
AUT NURSE TOT 1000HAB A 1997 5.19 D
AUT NURSE TOT 1000HAB A 1998 5.27 D
AUT NURSE TOT 1000HAB A 1999 5.42 D
AUT NURSE TOT 1000HAB A 2000 5.55 D
AUT NURSE TOT 1000HAB A 2001 5.58 D
AUT NURSE TOT 1000HAB A 2002 5.68 D
AUT NURSE TOT 1000HAB A 2003 5.68 D
AUT NURSE TOT 1000HAB A 2004 5.93 D
AUT NURSE TOT 1000HAB A 2005 5.99 D
AUT NURSE TOT 1000HAB A 2006 6.14 D
AUT NURSE TOT 1000HAB A 2007 6.21 D
AUT NURSE TOT 1000HAB A 2008 6.36 D
AUT NURSE TOT 1000HAB A 2009 6.47 D
AUT NURSE TOT 1000HAB A 2010 6.53 D
AUT NURSE TOT 1000HAB A 2011 6.62 D
AUT NURSE TOT 1000HAB A 2012 6.65 D
AUT NURSE TOT 1000HAB A 2013 6.69 D
AUT NURSE TOT 1000HAB A 2014 6.79 D
AUT NURSE TOT 1000HAB A 2015 6.80 D
AUT NURSE TOT 1000HAB A 2016 6.77 D
AUT NURSE TOT 1000HAB A 2017 6.85 D
AUT NURSE TOT 1000HAB A 2018 6.85 D
AUT NURSE TOT 1000HAB A 2019 10.30 B
AUT NURSE TOT 1000HAB A 2020 10.32 NA
AUT NURSE TOT 1000HAB A 2021 10.60 NA
CAN NURSE TOT 1000HAB A 2003 8.51 NA
CAN NURSE TOT 1000HAB A 2004 8.51 NA
CAN NURSE TOT 1000HAB A 2005 8.73 NA
CAN NURSE TOT 1000HAB A 2006 8.84 NA
CAN NURSE TOT 1000HAB A 2007 9.04 NA
CAN NURSE TOT 1000HAB A 2008 9.16 NA
CAN NURSE TOT 1000HAB A 2009 9.32 NA
CAN NURSE TOT 1000HAB A 2010 9.37 NA
CAN NURSE TOT 1000HAB A 2011 9.29 NA
CAN NURSE TOT 1000HAB A 2012 9.40 NA
CAN NURSE TOT 1000HAB A 2013 9.54 NA
CAN NURSE TOT 1000HAB A 2014 9.81 NA
CAN NURSE TOT 1000HAB A 2015 9.91 NA
CAN NURSE TOT 1000HAB A 2016 9.96 NA
CAN NURSE TOT 1000HAB A 2017 10.00 NA
CAN NURSE TOT 1000HAB A 2018 9.95 NA
CAN NURSE TOT 1000HAB A 2019 9.98 NA
CAN NURSE TOT 1000HAB A 2020 10.06 NA
CAN NURSE TOT 1000HAB A 2021 10.25 NA
CZE NURSE TOT 1000HAB A 1980 5.95 NA
CZE NURSE TOT 1000HAB A 1981 6.09 NA
CZE NURSE TOT 1000HAB A 1982 6.26 NA
CZE NURSE TOT 1000HAB A 1983 6.41 NA

Αυτά ενοποιήθηκαν, κατά τα γνωστά (βλ. υποενότητα «Συγχώνευση πινάκων δίπλα-δίπλα» της Προσθήκη στοιχείων σε πίνακα), γράφοντας:

DocNurc <- merge(doctorsPer1000,nurcesPer1000,by=c("LOCATION","TIME"))
LOCATION TIME INDICATOR.x SUBJECT.x MEASURE.x FREQUENCY.x Value.x Flag.Codes.x INDICATOR.y SUBJECT.y MEASURE.y FREQUENCY.y Value.y Flag.Codes.y
AUS 1980 MEDICALDOC TOT 1000HAB A 1.85 NA NURSE TOT 1000HAB A 10.33 NA
AUS 1981 MEDICALDOC TOT 1000HAB A 1.86 NA NURSE TOT 1000HAB A 9.91 NA
AUS 1982 MEDICALDOC TOT 1000HAB A 1.90 NA NURSE TOT 1000HAB A 9.85 NA
AUS 1983 MEDICALDOC TOT 1000HAB A 1.95 NA NURSE TOT 1000HAB A 9.87 NA
AUS 1984 MEDICALDOC TOT 1000HAB A 1.83 B NURSE TOT 1000HAB A 9.91 NA
AUS 1985 MEDICALDOC TOT 1000HAB A 1.91 NA NURSE TOT 1000HAB A 9.55 NA
AUS 1986 MEDICALDOC TOT 1000HAB A 2.01 NA NURSE TOT 1000HAB A 10.92 B
AUS 1987 MEDICALDOC TOT 1000HAB A 2.06 NA NURSE TOT 1000HAB A 11.37 NA
AUS 1988 MEDICALDOC TOT 1000HAB A 2.10 NA NURSE TOT 1000HAB A 11.60 NA
AUS 1989 MEDICALDOC TOT 1000HAB A 2.14 NA NURSE TOT 1000HAB A 11.72 NA
AUS 1990 MEDICALDOC TOT 1000HAB A 2.17 NA NURSE TOT 1000HAB A 11.63 NA
AUS 1991 MEDICALDOC TOT 1000HAB A 2.33 B NURSE TOT 1000HAB A 12.08 NA
AUS 1992 MEDICALDOC TOT 1000HAB A 2.37 NA NURSE TOT 1000HAB A 11.57 NA
AUS 1993 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 11.10 B
AUS 1994 MEDICALDOC TOT 1000HAB A 2.44 NA NURSE TOT 1000HAB A 11.50 NA
AUS 1995 MEDICALDOC TOT 1000HAB A 2.48 NA NURSE TOT 1000HAB A 10.84 NA
AUS 1996 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 10.83 NA
AUS 1997 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 10.41 B
AUS 1998 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 10.30 NA
AUS 1999 MEDICALDOC TOT 1000HAB A 2.45 NA NURSE TOT 1000HAB A 10.17 NA
AUS 2000 MEDICALDOC TOT 1000HAB A 2.49 NA NURSE TOT 1000HAB A 10.07 NA
AUS 2001 MEDICALDOC TOT 1000HAB A 2.56 NA NURSE TOT 1000HAB A 9.95 NA
AUS 2002 MEDICALDOC TOT 1000HAB A 2.56 NA NURSE TOT 1000HAB A 9.94 NA
AUS 2003 MEDICALDOC TOT 1000HAB A 2.63 NA NURSE TOT 1000HAB A 9.94 NA
AUS 2004 MEDICALDOC TOT 1000HAB A 2.71 NA NURSE TOT 1000HAB A 10.21 NA
AUS 2005 MEDICALDOC TOT 1000HAB A 2.78 NA NURSE TOT 1000HAB A 9.76 NA
AUS 2007 MEDICALDOC TOT 1000HAB A 3.01 NA NURSE TOT 1000HAB A 10.20 NA
AUS 2008 MEDICALDOC TOT 1000HAB A 3.02 NA NURSE TOT 1000HAB A 10.30 NA
AUS 2009 MEDICALDOC TOT 1000HAB A 3.12 NA NURSE TOT 1000HAB A 10.18 NA
AUS 2011 MEDICALDOC TOT 1000HAB A 3.32 NA NURSE TOT 1000HAB A 10.19 NA
AUS 2012 MEDICALDOC TOT 1000HAB A 3.31 E NURSE TOT 1000HAB A 10.22 E
AUS 2013 MEDICALDOC TOT 1000HAB A 3.37 NA NURSE TOT 1000HAB A 11.12 NA
AUS 2014 MEDICALDOC TOT 1000HAB A 3.45 E NURSE TOT 1000HAB A 11.28 E
AUS 2015 MEDICALDOC TOT 1000HAB A 3.51 E NURSE TOT 1000HAB A 11.39 E
AUS 2016 MEDICALDOC TOT 1000HAB A 3.58 E NURSE TOT 1000HAB A 11.57 E
AUS 2017 MEDICALDOC TOT 1000HAB A 3.68 E NURSE TOT 1000HAB A 11.69 E
AUS 2018 MEDICALDOC TOT 1000HAB A 3.75 E NURSE TOT 1000HAB A 11.93 E
AUS 2019 MEDICALDOC TOT 1000HAB A 3.83 E NURSE TOT 1000HAB A 12.23 E
AUS 2020 MEDICALDOC TOT 1000HAB A 3.91 E NURSE TOT 1000HAB A 12.28 E
AUS 2021 MEDICALDOC TOT 1000HAB A 4.02 E NURSE TOT 1000HAB A 12.81 E
AUT 1985 MEDICALDOC TOT 1000HAB A 2.57 NA NURSE TOT 1000HAB A 3.41 D
AUT 1986 MEDICALDOC TOT 1000HAB A 2.67 NA NURSE TOT 1000HAB A 3.56 D
AUT 1987 MEDICALDOC TOT 1000HAB A 2.70 NA NURSE TOT 1000HAB A 3.69 D
AUT 1988 MEDICALDOC TOT 1000HAB A 2.80 NA NURSE TOT 1000HAB A 3.67 D
AUT 1989 MEDICALDOC TOT 1000HAB A 2.90 NA NURSE TOT 1000HAB A 3.82 D
AUT 1990 MEDICALDOC TOT 1000HAB A 3.01 NA NURSE TOT 1000HAB A 3.91 D
AUT 1991 MEDICALDOC TOT 1000HAB A 3.09 NA NURSE TOT 1000HAB A 4.02 D
AUT 1992 MEDICALDOC TOT 1000HAB A 3.21 NA NURSE TOT 1000HAB A 4.19 D
AUT 1993 MEDICALDOC TOT 1000HAB A 3.30 NA NURSE TOT 1000HAB A 4.43 D
AUT 1994 MEDICALDOC TOT 1000HAB A 3.41 NA NURSE TOT 1000HAB A 4.75 D
AUT 1995 MEDICALDOC TOT 1000HAB A 3.51 NA NURSE TOT 1000HAB A 4.95 D
AUT 1996 MEDICALDOC TOT 1000HAB A 3.58 NA NURSE TOT 1000HAB A 5.06 D
AUT 1997 MEDICALDOC TOT 1000HAB A 3.66 NA NURSE TOT 1000HAB A 5.19 D
AUT 1998 MEDICALDOC TOT 1000HAB A 3.77 NA NURSE TOT 1000HAB A 5.27 D
AUT 1999 MEDICALDOC TOT 1000HAB A 3.77 NA NURSE TOT 1000HAB A 5.42 D
AUT 2000 MEDICALDOC TOT 1000HAB A 3.85 NA NURSE TOT 1000HAB A 5.55 D
AUT 2001 MEDICALDOC TOT 1000HAB A 3.96 NA NURSE TOT 1000HAB A 5.58 D
AUT 2002 MEDICALDOC TOT 1000HAB A 4.03 NA NURSE TOT 1000HAB A 5.68 D
AUT 2003 MEDICALDOC TOT 1000HAB A 4.11 NA NURSE TOT 1000HAB A 5.68 D
AUT 2004 MEDICALDOC TOT 1000HAB A 4.20 NA NURSE TOT 1000HAB A 5.93 D
AUT 2005 MEDICALDOC TOT 1000HAB A 4.32 NA NURSE TOT 1000HAB A 5.99 D
AUT 2006 MEDICALDOC TOT 1000HAB A 4.45 NA NURSE TOT 1000HAB A 6.14 D
AUT 2007 MEDICALDOC TOT 1000HAB A 4.52 B NURSE TOT 1000HAB A 6.21 D
AUT 2008 MEDICALDOC TOT 1000HAB A 4.59 NA NURSE TOT 1000HAB A 6.36 D
AUT 2009 MEDICALDOC TOT 1000HAB A 4.67 NA NURSE TOT 1000HAB A 6.47 D
AUT 2010 MEDICALDOC TOT 1000HAB A 4.77 NA NURSE TOT 1000HAB A 6.53 D
AUT 2011 MEDICALDOC TOT 1000HAB A 4.82 NA NURSE TOT 1000HAB A 6.62 D
AUT 2012 MEDICALDOC TOT 1000HAB A 4.87 NA NURSE TOT 1000HAB A 6.65 D
AUT 2013 MEDICALDOC TOT 1000HAB A 4.96 B NURSE TOT 1000HAB A 6.69 D
AUT 2014 MEDICALDOC TOT 1000HAB A 5.02 NA NURSE TOT 1000HAB A 6.79 D
AUT 2015 MEDICALDOC TOT 1000HAB A 5.06 NA NURSE TOT 1000HAB A 6.80 D
AUT 2016 MEDICALDOC TOT 1000HAB A 5.11 NA NURSE TOT 1000HAB A 6.77 D
AUT 2017 MEDICALDOC TOT 1000HAB A 5.16 NA NURSE TOT 1000HAB A 6.85 D
AUT 2018 MEDICALDOC TOT 1000HAB A 5.22 NA NURSE TOT 1000HAB A 6.85 D
AUT 2019 MEDICALDOC TOT 1000HAB A 5.29 NA NURSE TOT 1000HAB A 10.30 B
AUT 2020 MEDICALDOC TOT 1000HAB A 5.32 NA NURSE TOT 1000HAB A 10.32 NA
AUT 2021 MEDICALDOC TOT 1000HAB A 5.41 NA NURSE TOT 1000HAB A 10.60 NA
BEL 2004 MEDICALDOC TOT 1000HAB A 2.87 NA NURSE TOT 1000HAB A 8.79 E
BEL 2005 MEDICALDOC TOT 1000HAB A 2.87 NA NURSE TOT 1000HAB A 9.01 E
BEL 2006 MEDICALDOC TOT 1000HAB A 2.89 NA NURSE TOT 1000HAB A 9.12 E
BEL 2007 MEDICALDOC TOT 1000HAB A 2.91 NA NURSE TOT 1000HAB A 9.24 E
BEL 2008 MEDICALDOC TOT 1000HAB A 2.92 NA NURSE TOT 1000HAB A 9.32 E
BEL 2009 MEDICALDOC TOT 1000HAB A 2.92 NA NURSE TOT 1000HAB A 9.42 NA
BEL 2010 MEDICALDOC TOT 1000HAB A 2.92 NA NURSE TOT 1000HAB A 9.59 E
BEL 2011 MEDICALDOC TOT 1000HAB A 2.92 NA NURSE TOT 1000HAB A 9.81 E
BEL 2012 MEDICALDOC TOT 1000HAB A 2.93 NA NURSE TOT 1000HAB A 10.02 E
BEL 2013 MEDICALDOC TOT 1000HAB A 2.96 NA NURSE TOT 1000HAB A 10.30 E
BEL 2014 MEDICALDOC TOT 1000HAB A 2.98 NA NURSE TOT 1000HAB A 10.58 E
BEL 2015 MEDICALDOC TOT 1000HAB A 3.02 NA NURSE TOT 1000HAB A 10.83 E
BEL 2016 MEDICALDOC TOT 1000HAB A 3.07 NA NURSE TOT 1000HAB A 10.96 B
BEL 2017 MEDICALDOC TOT 1000HAB A 3.08 NA NURSE TOT 1000HAB A 11.22 NA
BEL 2018 MEDICALDOC TOT 1000HAB A 3.13 NA NURSE TOT 1000HAB A 11.07 NA
BRA 2007 MEDICALDOC TOT 1000HAB A 1.30 NA NURSE TOT 1000HAB A 0.50 NA
BRA 2008 MEDICALDOC TOT 1000HAB A 1.41 NA NURSE TOT 1000HAB A 0.56 NA
BRA 2009 MEDICALDOC TOT 1000HAB A 1.46 NA NURSE TOT 1000HAB A 0.61 NA
BRA 2010 MEDICALDOC TOT 1000HAB A 1.52 NA NURSE TOT 1000HAB A 0.67 NA
BRA 2011 MEDICALDOC TOT 1000HAB A 1.50 NA NURSE TOT 1000HAB A 0.73 NA
BRA 2012 MEDICALDOC TOT 1000HAB A 1.55 NA NURSE TOT 1000HAB A 0.80 NA
BRA 2013 MEDICALDOC TOT 1000HAB A 1.62 NA NURSE TOT 1000HAB A 0.88 NA
BRA 2014 MEDICALDOC TOT 1000HAB A 1.71 NA NURSE TOT 1000HAB A 0.97 NA

Είναι αναμενόμενο οι αριθμοί των γιατρών ανά χίλιους κατοίκους και οι αριθμοί των νοσοκόμων θα συσχετίζονται με κάποιον τρόπο. Ποιος είναι άραγε αυτός ο τρόπος; Θα ήταν χρήσιμο να έχουμε έναν μαθηματικό τύπο, όπου δίνοντάς του μια τιμή για τον αριθμό των νοσοκόμων (π.χ. 2 νοσοκόμες ανά χίλιους κατοίκους), να μας υπολογίζει τον αριθμό των γιατρών (εν προκειμένω είναι 1.64 γιατροί ανά χίλιους κατοίκους).

Για να κάνουμε ευκολότερη την μελέτη των δύο ομάδων αριθμών, τους δίνουμε ονόματα μέσω της κλασσικής διαδικασίας:

giatroi <- DocNurc$Value.x
nosok <- DocNurc$Value.y

Το να επιδιώξουμε εδώ την απόλυτη ακρίβεια, περισσότερο θα συσκότιζε την εικόνα που θέλουμε ν’ αποκτήσουμε, παρά θα την ξεκαθάριζε. Η απόλυτη ακρίβεια θα ήταν ένας μαθηματικός τύπος, ιδιαίτερα περίπλοκος και ακατάλληλος για εκτιμήσεις σχέσεων, αλλά και υπολογισμούς προβλέψεων. O πιο απλός τύπος θα ήταν μια γραμμική σχέση:

\[[giatroi]=\alpha+\beta\cdot[nosok]\]

η οποία θα εκφράζει στο περίπου τον αριθμό των γιατρών βάσει του αριθμού των νοσοκόμων. Κερδίσαμε κάτι σε απλότητα τύπου, χάσαμε όμως κάτι σε ακρίβεια. Δεν πειράζει, καλή καρδιά.

Πόσο δυνατόν όμως είναι αυτό; Το πλήθος των γιατρών είναι γραμμικώς συσχετισμένο με το πλήθος των νοσοκόμων; Σύμφωνα με όσα έχουμε πει (βλ. ενότητα Συντελεστής γραμμικής συσχέτισης Pearson), γράφουμε:

cor(giatroi,nosok)
## [1] 0.5528042

Βρίσκουμε συντελεστή γραμμικής συσχέτισης Pearson 0.5528042, άρα έχουμε ισχυρή γραμμική συσχέτιση. Επομένως δικαιολογούμαστε να περιμένουμε ότι θα υπάρχει μαθηματικός τύπος σαν τον προηγούμενο που να συνδέει το πλήθος των γιατρών με το πλήθος των νοσοκόμων. Γράφουμε λοιπόν:

lm(giatroi ~ nosok)
## 
## Call:
## lm(formula = giatroi ~ nosok)
## 
## Coefficients:
## (Intercept)        nosok  
##      1.9248       0.1308

Αυτό σημαίνει ότι:

\[[giatroi]=1.9248+0.1308\cdot[nosok]\]

Έτσι, μπορούμε να εικάσουμε πως πχ για 2.23 νοσοκόμους ανά χίλιους κατοίκους, θα έχουμε πιθανότατα κατά μέσο όρο:

\[1.9248+0.1308\cdot2.23=2.216484\]

γιατρούς ανά χίλους κατοίκους.

Ευθεία γραμμικής παλινδρόμησης
Η ευθεία γραμμικής παλινδρόμησης σχεδιάστηκε να προσεγγίζει τις μέσες τιμές ενός μεγέθους (πχ του αριθμού των γιατρών) δεδομένης της εκάστοτε τιμής ενός άλλου μεγέθους (πχ του αριθμού των νοσοκόμων).

Μια σχέση της μορφής \([giatroi]=1.9248+0.1308\cdot[nosok]\) δεν αποκαλείται τυχαία «ευθεία γραμμικής παλινδόμησης», διότι, αν τη σχεδιάσουμε σ’ ένα σύστημα συντεταγμένων (π.χ. εκεί που σχεδιάσαμε το διάγραμμα διασποράς), θα σχηματίσουν τα σημεία μιας ευθείας γραμμής. Για να σχεδιαστεί η εν λόγω ευθεία στην θα χρησιμοποιήσουμε την συνάρτηση abline(). Βέβαια, πριν την σχεδιάσουμε, πρέπει να ’χουμε ήδη φτιαγμένο ένα σύστημα συντεταγμένων, οπότε γράφουμε (βλ. ενότητα Διάγραμμα διασποράς):

plot(giatroi ~ nosok)

Πάνω σ’ αυτό το διάγραμμα διασποράς θα σχεδιαστεί η ευθεία της απλής γραμμικής παλινδρόμησης συμπληρώνοντας από κάτω abline(lm(giatroi ~ nosok), col = "red"), δηλαδή:

plot(giatroi ~ nosok)
abline(lm(giatroi ~ nosok), col = "red")

Εναλλακτικά τα παραπάνω μπορούν να γίνουν μέσω της συνάρτησης geom_smooth() του πακέτου ggplot2 γράφοντας:

if(!require(ggplot2)){
    install.packages("ggplot2")
    library(ggplot2)
}
DocNurcEyth <- ggplot(DocNurc, aes(x = nosok, y = giatroi))
DocNurcEyth + geom_smooth(method='lm')

Αν θέλουμε να είναι μαζί με το διάγραμμα διασποράς, γράφουμε:

DocNurcEyth + geom_point() + geom_smooth(method='lm')
## `geom_smooth()` using formula = 'y ~ x'

Για να δούμε περισσότερες αισθητικές παρεμβάσεις θα χρησιμοποιήσουμε κάποια επιπλέον δεδομένα. Αντλήσαμε από το datahub στοιχεία για τις χώρες και τις ηπείρους που ανήκουν. Τα δεδομένα αποθηκεύτηκαν σ’ ένα αρχείο ονόματι XoresHpiroi2.txt.

Continent_Name Continent_Code Country_Name Two_Letter_Country_Code Three_Letter_Country_Code Country_Number
Asia AS Afghanistan, Islamic Republic of AF AFG 4
Europe EU Albania, Republic of AL ALB 8
Antarctica AN Antarctica (the territory South of 60 deg S) AQ ATA 10
Africa AF Algeria, People’s Democratic Republic of DZ DZA 12
Oceania OC American Samoa AS ASM 16
Europe EU Andorra, Principality of AD AND 20
Africa AF Angola, Republic of AO AGO 24
North America NA Antigua and Barbuda AG ATG 28
Europe EU Azerbaijan, Republic of AZ AZE 31
Asia AS Azerbaijan, Republic of AZ AZE 31
South America SA Argentina, Argentine Republic AR ARG 32
Oceania OC Australia, Commonwealth of AU AUS 36
Europe EU Austria, Republic of AT AUT 40
North America NA Bahamas, Commonwealth of the BS BHS 44
Asia AS Bahrain, Kingdom of BH BHR 48
Asia AS Bangladesh, People’s Republic of BD BGD 50
Europe EU Armenia, Republic of AM ARM 51
Asia AS Armenia, Republic of AM ARM 51
North America NA Barbados BB BRB 52
Europe EU Belgium, Kingdom of BE BEL 56
North America NA Bermuda BM BMU 60
Asia AS Bhutan, Kingdom of BT BTN 64
South America SA Bolivia, Republic of BO BOL 68
Europe EU Bosnia and Herzegovina BA BIH 70
Africa AF Botswana, Republic of BW BWA 72
Antarctica AN Bouvet Island (Bouvetoya) BV BVT 74
South America SA Brazil, Federative Republic of BR BRA 76
North America NA Belize BZ BLZ 84
Asia AS British Indian Ocean Territory (Chagos Archipelago) IO IOT 86
Oceania OC Solomon Islands SB SLB 90
North America NA British Virgin Islands VG VGB 92
Asia AS Brunei Darussalam BN BRN 96
Europe EU Bulgaria, Republic of BG BGR 100
Asia AS Myanmar, Union of MM MMR 104
Africa AF Burundi, Republic of BI BDI 108
Europe EU Belarus, Republic of BY BLR 112
Asia AS Cambodia, Kingdom of KH KHM 116
Africa AF Cameroon, Republic of CM CMR 120
North America NA Canada CA CAN 124
Africa AF Cape Verde, Republic of CV CPV 132
North America NA Cayman Islands KY CYM 136
Africa AF Central African Republic CF CAF 140
Asia AS Sri Lanka, Democratic Socialist Republic of LK LKA 144
Africa AF Chad, Republic of TD TCD 148
South America SA Chile, Republic of CL CHL 152
Asia AS China, People’s Republic of CN CHN 156
Asia AS Taiwan TW TWN 158
Asia AS Christmas Island CX CXR 162
Asia AS Cocos (Keeling) Islands CC CCK 166
South America SA Colombia, Republic of CO COL 170
Africa AF Comoros, Union of the KM COM 174
Africa AF Mayotte YT MYT 175
Africa AF Congo, Republic of the CG COG 178
Africa AF Congo, Democratic Republic of the CD COD 180
Oceania OC Cook Islands CK COK 184
North America NA Costa Rica, Republic of CR CRI 188
Europe EU Croatia, Republic of HR HRV 191
North America NA Cuba, Republic of CU CUB 192
Europe EU Cyprus, Republic of CY CYP 196
Asia AS Cyprus, Republic of CY CYP 196
Europe EU Czech Republic CZ CZE 203
Africa AF Benin, Republic of BJ BEN 204
Europe EU Denmark, Kingdom of DK DNK 208
North America NA Dominica, Commonwealth of DM DMA 212
North America NA Dominican Republic DO DOM 214
South America SA Ecuador, Republic of EC ECU 218
North America NA El Salvador, Republic of SV SLV 222
Africa AF Equatorial Guinea, Republic of GQ GNQ 226
Africa AF Ethiopia, Federal Democratic Republic of ET ETH 231
Africa AF Eritrea, State of ER ERI 232
Europe EU Estonia, Republic of EE EST 233
Europe EU Faroe Islands FO FRO 234
South America SA Falkland Islands (Malvinas) FK FLK 238
Antarctica AN South Georgia and the South Sandwich Islands GS SGS 239
Oceania OC Fiji, Republic of the Fiji Islands FJ FJI 242
Europe EU Finland, Republic of FI FIN 246
Europe EU Γ…land Islands |AX |ALA
           24

Αυτά συνενώθηκαν με τον πίνακα DocNurc γράφοντας πρώτα:

names(XoresHpiroi2)[names(XoresHpiroi2) == "Three_Letter_Country_Code"] <- "LOCATION"

για να μετονομάσουμε την στήλη Three_Letter_Country_Code σε LOCATION

Ακολούθως:

DocNurcCont <- merge(DocNurc,XoresHpiroi2,by = "LOCATION")
LOCATION TIME INDICATOR.x SUBJECT.x MEASURE.x FREQUENCY.x Value.x Flag.Codes.x INDICATOR.y SUBJECT.y MEASURE.y FREQUENCY.y Value.y Flag.Codes.y Continent_Name Continent_Code Country_Name Two_Letter_Country_Code Country_Number
AUS 1980 MEDICALDOC TOT 1000HAB A 1.85 NA NURSE TOT 1000HAB A 10.33 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1981 MEDICALDOC TOT 1000HAB A 1.86 NA NURSE TOT 1000HAB A 9.91 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1982 MEDICALDOC TOT 1000HAB A 1.90 NA NURSE TOT 1000HAB A 9.85 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1983 MEDICALDOC TOT 1000HAB A 1.95 NA NURSE TOT 1000HAB A 9.87 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1984 MEDICALDOC TOT 1000HAB A 1.83 B NURSE TOT 1000HAB A 9.91 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1985 MEDICALDOC TOT 1000HAB A 1.91 NA NURSE TOT 1000HAB A 9.55 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1986 MEDICALDOC TOT 1000HAB A 2.01 NA NURSE TOT 1000HAB A 10.92 B Oceania OC Australia, Commonwealth of AU 36
AUS 1987 MEDICALDOC TOT 1000HAB A 2.06 NA NURSE TOT 1000HAB A 11.37 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1988 MEDICALDOC TOT 1000HAB A 2.10 NA NURSE TOT 1000HAB A 11.60 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1989 MEDICALDOC TOT 1000HAB A 2.14 NA NURSE TOT 1000HAB A 11.72 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1990 MEDICALDOC TOT 1000HAB A 2.17 NA NURSE TOT 1000HAB A 11.63 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1991 MEDICALDOC TOT 1000HAB A 2.33 B NURSE TOT 1000HAB A 12.08 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1992 MEDICALDOC TOT 1000HAB A 2.37 NA NURSE TOT 1000HAB A 11.57 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1993 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 11.10 B Oceania OC Australia, Commonwealth of AU 36
AUS 1994 MEDICALDOC TOT 1000HAB A 2.44 NA NURSE TOT 1000HAB A 11.50 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1995 MEDICALDOC TOT 1000HAB A 2.48 NA NURSE TOT 1000HAB A 10.84 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1996 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 10.83 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1997 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 10.41 B Oceania OC Australia, Commonwealth of AU 36
AUS 1998 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 10.30 NA Oceania OC Australia, Commonwealth of AU 36
AUS 1999 MEDICALDOC TOT 1000HAB A 2.45 NA NURSE TOT 1000HAB A 10.17 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2000 MEDICALDOC TOT 1000HAB A 2.49 NA NURSE TOT 1000HAB A 10.07 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2001 MEDICALDOC TOT 1000HAB A 2.56 NA NURSE TOT 1000HAB A 9.95 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2002 MEDICALDOC TOT 1000HAB A 2.56 NA NURSE TOT 1000HAB A 9.94 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2003 MEDICALDOC TOT 1000HAB A 2.63 NA NURSE TOT 1000HAB A 9.94 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2004 MEDICALDOC TOT 1000HAB A 2.71 NA NURSE TOT 1000HAB A 10.21 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2005 MEDICALDOC TOT 1000HAB A 2.78 NA NURSE TOT 1000HAB A 9.76 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2007 MEDICALDOC TOT 1000HAB A 3.01 NA NURSE TOT 1000HAB A 10.20 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2008 MEDICALDOC TOT 1000HAB A 3.02 NA NURSE TOT 1000HAB A 10.30 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2009 MEDICALDOC TOT 1000HAB A 3.12 NA NURSE TOT 1000HAB A 10.18 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2011 MEDICALDOC TOT 1000HAB A 3.32 NA NURSE TOT 1000HAB A 10.19 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2012 MEDICALDOC TOT 1000HAB A 3.31 E NURSE TOT 1000HAB A 10.22 E Oceania OC Australia, Commonwealth of AU 36
AUS 2013 MEDICALDOC TOT 1000HAB A 3.37 NA NURSE TOT 1000HAB A 11.12 NA Oceania OC Australia, Commonwealth of AU 36
AUS 2014 MEDICALDOC TOT 1000HAB A 3.45 E NURSE TOT 1000HAB A 11.28 E Oceania OC Australia, Commonwealth of AU 36
AUS 2015 MEDICALDOC TOT 1000HAB A 3.51 E NURSE TOT 1000HAB A 11.39 E Oceania OC Australia, Commonwealth of AU 36
AUS 2016 MEDICALDOC TOT 1000HAB A 3.58 E NURSE TOT 1000HAB A 11.57 E Oceania OC Australia, Commonwealth of AU 36
AUS 2017 MEDICALDOC TOT 1000HAB A 3.68 E NURSE TOT 1000HAB A 11.69 E Oceania OC Australia, Commonwealth of AU 36
AUS 2018 MEDICALDOC TOT 1000HAB A 3.75 E NURSE TOT 1000HAB A 11.93 E Oceania OC Australia, Commonwealth of AU 36
AUS 2019 MEDICALDOC TOT 1000HAB A 3.83 E NURSE TOT 1000HAB A 12.23 E Oceania OC Australia, Commonwealth of AU 36
AUS 2020 MEDICALDOC TOT 1000HAB A 3.91 E NURSE TOT 1000HAB A 12.28 E Oceania OC Australia, Commonwealth of AU 36
AUS 2021 MEDICALDOC TOT 1000HAB A 4.02 E NURSE TOT 1000HAB A 12.81 E Oceania OC Australia, Commonwealth of AU 36
AUT 1985 MEDICALDOC TOT 1000HAB A 2.57 NA NURSE TOT 1000HAB A 3.41 D Europe EU Austria, Republic of AT 40
AUT 1986 MEDICALDOC TOT 1000HAB A 2.67 NA NURSE TOT 1000HAB A 3.56 D Europe EU Austria, Republic of AT 40
AUT 1987 MEDICALDOC TOT 1000HAB A 2.70 NA NURSE TOT 1000HAB A 3.69 D Europe EU Austria, Republic of AT 40
AUT 1988 MEDICALDOC TOT 1000HAB A 2.80 NA NURSE TOT 1000HAB A 3.67 D Europe EU Austria, Republic of AT 40
AUT 1989 MEDICALDOC TOT 1000HAB A 2.90 NA NURSE TOT 1000HAB A 3.82 D Europe EU Austria, Republic of AT 40
AUT 1990 MEDICALDOC TOT 1000HAB A 3.01 NA NURSE TOT 1000HAB A 3.91 D Europe EU Austria, Republic of AT 40
AUT 1991 MEDICALDOC TOT 1000HAB A 3.09 NA NURSE TOT 1000HAB A 4.02 D Europe EU Austria, Republic of AT 40
AUT 1992 MEDICALDOC TOT 1000HAB A 3.21 NA NURSE TOT 1000HAB A 4.19 D Europe EU Austria, Republic of AT 40
AUT 1993 MEDICALDOC TOT 1000HAB A 3.30 NA NURSE TOT 1000HAB A 4.43 D Europe EU Austria, Republic of AT 40
AUT 1994 MEDICALDOC TOT 1000HAB A 3.41 NA NURSE TOT 1000HAB A 4.75 D Europe EU Austria, Republic of AT 40
AUT 1995 MEDICALDOC TOT 1000HAB A 3.51 NA NURSE TOT 1000HAB A 4.95 D Europe EU Austria, Republic of AT 40
AUT 1996 MEDICALDOC TOT 1000HAB A 3.58 NA NURSE TOT 1000HAB A 5.06 D Europe EU Austria, Republic of AT 40
AUT 1997 MEDICALDOC TOT 1000HAB A 3.66 NA NURSE TOT 1000HAB A 5.19 D Europe EU Austria, Republic of AT 40
AUT 1998 MEDICALDOC TOT 1000HAB A 3.77 NA NURSE TOT 1000HAB A 5.27 D Europe EU Austria, Republic of AT 40
AUT 1999 MEDICALDOC TOT 1000HAB A 3.77 NA NURSE TOT 1000HAB A 5.42 D Europe EU Austria, Republic of AT 40
AUT 2000 MEDICALDOC TOT 1000HAB A 3.85 NA NURSE TOT 1000HAB A 5.55 D Europe EU Austria, Republic of AT 40
AUT 2001 MEDICALDOC TOT 1000HAB A 3.96 NA NURSE TOT 1000HAB A 5.58 D Europe EU Austria, Republic of AT 40
AUT 2002 MEDICALDOC TOT 1000HAB A 4.03 NA NURSE TOT 1000HAB A 5.68 D Europe EU Austria, Republic of AT 40
AUT 2003 MEDICALDOC TOT 1000HAB A 4.11 NA NURSE TOT 1000HAB A 5.68 D Europe EU Austria, Republic of AT 40
AUT 2004 MEDICALDOC TOT 1000HAB A 4.20 NA NURSE TOT 1000HAB A 5.93 D Europe EU Austria, Republic of AT 40
AUT 2005 MEDICALDOC TOT 1000HAB A 4.32 NA NURSE TOT 1000HAB A 5.99 D Europe EU Austria, Republic of AT 40
AUT 2006 MEDICALDOC TOT 1000HAB A 4.45 NA NURSE TOT 1000HAB A 6.14 D Europe EU Austria, Republic of AT 40
AUT 2007 MEDICALDOC TOT 1000HAB A 4.52 B NURSE TOT 1000HAB A 6.21 D Europe EU Austria, Republic of AT 40
AUT 2008 MEDICALDOC TOT 1000HAB A 4.59 NA NURSE TOT 1000HAB A 6.36 D Europe EU Austria, Republic of AT 40
AUT 2009 MEDICALDOC TOT 1000HAB A 4.67 NA NURSE TOT 1000HAB A 6.47 D Europe EU Austria, Republic of AT 40
AUT 2010 MEDICALDOC TOT 1000HAB A 4.77 NA NURSE TOT 1000HAB A 6.53 D Europe EU Austria, Republic of AT 40
AUT 2011 MEDICALDOC TOT 1000HAB A 4.82 NA NURSE TOT 1000HAB A 6.62 D Europe EU Austria, Republic of AT 40
AUT 2012 MEDICALDOC TOT 1000HAB A 4.87 NA NURSE TOT 1000HAB A 6.65 D Europe EU Austria, Republic of AT 40
AUT 2013 MEDICALDOC TOT 1000HAB A 4.96 B NURSE TOT 1000HAB A 6.69 D Europe EU Austria, Republic of AT 40
AUT 2014 MEDICALDOC TOT 1000HAB A 5.02 NA NURSE TOT 1000HAB A 6.79 D Europe EU Austria, Republic of AT 40
AUT 2015 MEDICALDOC TOT 1000HAB A 5.06 NA NURSE TOT 1000HAB A 6.80 D Europe EU Austria, Republic of AT 40
AUT 2016 MEDICALDOC TOT 1000HAB A 5.11 NA NURSE TOT 1000HAB A 6.77 D Europe EU Austria, Republic of AT 40
AUT 2017 MEDICALDOC TOT 1000HAB A 5.16 NA NURSE TOT 1000HAB A 6.85 D Europe EU Austria, Republic of AT 40
AUT 2018 MEDICALDOC TOT 1000HAB A 5.22 NA NURSE TOT 1000HAB A 6.85 D Europe EU Austria, Republic of AT 40
AUT 2019 MEDICALDOC TOT 1000HAB A 5.29 NA NURSE TOT 1000HAB A 10.30 B Europe EU Austria, Republic of AT 40
AUT 2020 MEDICALDOC TOT 1000HAB A 5.32 NA NURSE TOT 1000HAB A 10.32 NA Europe EU Austria, Republic of AT 40
AUT 2021 MEDICALDOC TOT 1000HAB A 5.41 NA NURSE TOT 1000HAB A 10.60 NA Europe EU Austria, Republic of AT 40
BEL 2004 MEDICALDOC TOT 1000HAB A 2.87 NA NURSE TOT 1000HAB A 8.79 E Europe EU Belgium, Kingdom of BE 56
BEL 2005 MEDICALDOC TOT 1000HAB A 2.87 NA NURSE TOT 1000HAB A 9.01 E Europe EU Belgium, Kingdom of BE 56
BEL 2006 MEDICALDOC TOT 1000HAB A 2.89 NA NURSE TOT 1000HAB A 9.12 E Europe EU Belgium, Kingdom of BE 56
BEL 2007 MEDICALDOC TOT 1000HAB A 2.91 NA NURSE TOT 1000HAB A 9.24 E Europe EU Belgium, Kingdom of BE 56
BEL 2008 MEDICALDOC TOT 1000HAB A 2.92 NA NURSE TOT 1000HAB A 9.32 E Europe EU Belgium, Kingdom of BE 56
BEL 2009 MEDICALDOC TOT 1000HAB A 2.92 NA NURSE TOT 1000HAB A 9.42 NA Europe EU Belgium, Kingdom of BE 56
BEL 2010 MEDICALDOC TOT 1000HAB A 2.92 NA NURSE TOT 1000HAB A 9.59 E Europe EU Belgium, Kingdom of BE 56
BEL 2011 MEDICALDOC TOT 1000HAB A 2.92 NA NURSE TOT 1000HAB A 9.81 E Europe EU Belgium, Kingdom of BE 56
BEL 2012 MEDICALDOC TOT 1000HAB A 2.93 NA NURSE TOT 1000HAB A 10.02 E Europe EU Belgium, Kingdom of BE 56
BEL 2013 MEDICALDOC TOT 1000HAB A 2.96 NA NURSE TOT 1000HAB A 10.30 E Europe EU Belgium, Kingdom of BE 56
BEL 2014 MEDICALDOC TOT 1000HAB A 2.98 NA NURSE TOT 1000HAB A 10.58 E Europe EU Belgium, Kingdom of BE 56
BEL 2015 MEDICALDOC TOT 1000HAB A 3.02 NA NURSE TOT 1000HAB A 10.83 E Europe EU Belgium, Kingdom of BE 56
BEL 2016 MEDICALDOC TOT 1000HAB A 3.07 NA NURSE TOT 1000HAB A 10.96 B Europe EU Belgium, Kingdom of BE 56
BEL 2017 MEDICALDOC TOT 1000HAB A 3.08 NA NURSE TOT 1000HAB A 11.22 NA Europe EU Belgium, Kingdom of BE 56
BEL 2018 MEDICALDOC TOT 1000HAB A 3.13 NA NURSE TOT 1000HAB A 11.07 NA Europe EU Belgium, Kingdom of BE 56
BRA 2007 MEDICALDOC TOT 1000HAB A 1.30 NA NURSE TOT 1000HAB A 0.50 NA South America SA Brazil, Federative Republic of BR 76
BRA 2008 MEDICALDOC TOT 1000HAB A 1.41 NA NURSE TOT 1000HAB A 0.56 NA South America SA Brazil, Federative Republic of BR 76
BRA 2009 MEDICALDOC TOT 1000HAB A 1.46 NA NURSE TOT 1000HAB A 0.61 NA South America SA Brazil, Federative Republic of BR 76
BRA 2010 MEDICALDOC TOT 1000HAB A 1.52 NA NURSE TOT 1000HAB A 0.67 NA South America SA Brazil, Federative Republic of BR 76
BRA 2011 MEDICALDOC TOT 1000HAB A 1.50 NA NURSE TOT 1000HAB A 0.73 NA South America SA Brazil, Federative Republic of BR 76
BRA 2012 MEDICALDOC TOT 1000HAB A 1.55 NA NURSE TOT 1000HAB A 0.80 NA South America SA Brazil, Federative Republic of BR 76
BRA 2013 MEDICALDOC TOT 1000HAB A 1.62 NA NURSE TOT 1000HAB A 0.88 NA South America SA Brazil, Federative Republic of BR 76
BRA 2014 MEDICALDOC TOT 1000HAB A 1.71 NA NURSE TOT 1000HAB A 0.97 NA South America SA Brazil, Federative Republic of BR 76

Κατόπιν από αυτόν τον πίνακα κρατήσαμε τις χώρες της Βορείου Αμερικής, γράφοντας:

DocNurcAm <- DocNurcCont[DocNurcCont$Continent_Name == "South America" | DocNurcCont$Continent_Name == "North America", ]
LOCATION TIME INDICATOR.x SUBJECT.x MEASURE.x FREQUENCY.x Value.x Flag.Codes.x INDICATOR.y SUBJECT.y MEASURE.y FREQUENCY.y Value.y Flag.Codes.y Continent_Name Continent_Code Country_Name Two_Letter_Country_Code Country_Number
93 BRA 2007 MEDICALDOC TOT 1000HAB A 1.30 NA NURSE TOT 1000HAB A 0.50 NA South America SA Brazil, Federative Republic of BR 76
94 BRA 2008 MEDICALDOC TOT 1000HAB A 1.41 NA NURSE TOT 1000HAB A 0.56 NA South America SA Brazil, Federative Republic of BR 76
95 BRA 2009 MEDICALDOC TOT 1000HAB A 1.46 NA NURSE TOT 1000HAB A 0.61 NA South America SA Brazil, Federative Republic of BR 76
96 BRA 2010 MEDICALDOC TOT 1000HAB A 1.52 NA NURSE TOT 1000HAB A 0.67 NA South America SA Brazil, Federative Republic of BR 76
97 BRA 2011 MEDICALDOC TOT 1000HAB A 1.50 NA NURSE TOT 1000HAB A 0.73 NA South America SA Brazil, Federative Republic of BR 76
98 BRA 2012 MEDICALDOC TOT 1000HAB A 1.55 NA NURSE TOT 1000HAB A 0.80 NA South America SA Brazil, Federative Republic of BR 76
99 BRA 2013 MEDICALDOC TOT 1000HAB A 1.62 NA NURSE TOT 1000HAB A 0.88 NA South America SA Brazil, Federative Republic of BR 76
100 BRA 2014 MEDICALDOC TOT 1000HAB A 1.71 NA NURSE TOT 1000HAB A 0.97 NA South America SA Brazil, Federative Republic of BR 76
101 BRA 2015 MEDICALDOC TOT 1000HAB A 1.73 NA NURSE TOT 1000HAB A 1.03 NA South America SA Brazil, Federative Republic of BR 76
102 BRA 2016 MEDICALDOC TOT 1000HAB A 1.79 NA NURSE TOT 1000HAB A 1.08 NA South America SA Brazil, Federative Republic of BR 76
103 BRA 2017 MEDICALDOC TOT 1000HAB A 1.86 NA NURSE TOT 1000HAB A 1.14 NA South America SA Brazil, Federative Republic of BR 76
104 BRA 2018 MEDICALDOC TOT 1000HAB A 1.90 NA NURSE TOT 1000HAB A 1.21 NA South America SA Brazil, Federative Republic of BR 76
105 BRA 2019 MEDICALDOC TOT 1000HAB A 1.97 NA NURSE TOT 1000HAB A 1.27 NA South America SA Brazil, Federative Republic of BR 76
106 BRA 2020 MEDICALDOC TOT 1000HAB A 2.05 NA NURSE TOT 1000HAB A 1.42 NA South America SA Brazil, Federative Republic of BR 76
107 BRA 2021 MEDICALDOC TOT 1000HAB A 2.15 NA NURSE TOT 1000HAB A 1.55 NA South America SA Brazil, Federative Republic of BR 76
108 CAN 2003 MEDICALDOC TOT 1000HAB A 2.10 NA NURSE TOT 1000HAB A 8.51 NA North America NA Canada CA 124
109 CAN 2004 MEDICALDOC TOT 1000HAB A 2.13 NA NURSE TOT 1000HAB A 8.51 NA North America NA Canada CA 124
110 CAN 2005 MEDICALDOC TOT 1000HAB A 2.16 NA NURSE TOT 1000HAB A 8.73 NA North America NA Canada CA 124
111 CAN 2006 MEDICALDOC TOT 1000HAB A 2.18 NA NURSE TOT 1000HAB A 8.84 NA North America NA Canada CA 124
112 CAN 2007 MEDICALDOC TOT 1000HAB A 2.22 NA NURSE TOT 1000HAB A 9.04 NA North America NA Canada CA 124
113 CAN 2008 MEDICALDOC TOT 1000HAB A 2.26 NA NURSE TOT 1000HAB A 9.16 NA North America NA Canada CA 124
114 CAN 2009 MEDICALDOC TOT 1000HAB A 2.34 NA NURSE TOT 1000HAB A 9.32 NA North America NA Canada CA 124
115 CAN 2010 MEDICALDOC TOT 1000HAB A 2.38 NA NURSE TOT 1000HAB A 9.37 NA North America NA Canada CA 124
116 CAN 2011 MEDICALDOC TOT 1000HAB A 2.46 NA NURSE TOT 1000HAB A 9.29 NA North America NA Canada CA 124
117 CAN 2012 MEDICALDOC TOT 1000HAB A 2.51 NA NURSE TOT 1000HAB A 9.40 NA North America NA Canada CA 124
118 CAN 2013 MEDICALDOC TOT 1000HAB A 2.57 NA NURSE TOT 1000HAB A 9.54 NA North America NA Canada CA 124
119 CAN 2014 MEDICALDOC TOT 1000HAB A 2.62 NA NURSE TOT 1000HAB A 9.81 NA North America NA Canada CA 124
120 CAN 2015 MEDICALDOC TOT 1000HAB A 2.67 NA NURSE TOT 1000HAB A 9.91 NA North America NA Canada CA 124
121 CAN 2016 MEDICALDOC TOT 1000HAB A 2.69 NA NURSE TOT 1000HAB A 9.96 NA North America NA Canada CA 124
122 CAN 2017 MEDICALDOC TOT 1000HAB A 2.73 NA NURSE TOT 1000HAB A 10.00 NA North America NA Canada CA 124
123 CAN 2018 MEDICALDOC TOT 1000HAB A 2.78 NA NURSE TOT 1000HAB A 9.95 NA North America NA Canada CA 124
124 CAN 2019 MEDICALDOC TOT 1000HAB A 2.78 NA NURSE TOT 1000HAB A 9.98 NA North America NA Canada CA 124
125 CAN 2020 MEDICALDOC TOT 1000HAB A 2.77 NA NURSE TOT 1000HAB A 10.06 NA North America NA Canada CA 124
126 CAN 2021 MEDICALDOC TOT 1000HAB A 2.81 E NURSE TOT 1000HAB A 10.25 NA North America NA Canada CA 124
665 MEX 1990 MEDICALDOC TOT 1000HAB A 0.97 NA NURSE TOT 1000HAB A 1.75 NA North America NA Mexico, United Mexican States MX 484
666 MEX 1991 MEDICALDOC TOT 1000HAB A 1.16 NA NURSE TOT 1000HAB A 1.89 NA North America NA Mexico, United Mexican States MX 484
667 MEX 1992 MEDICALDOC TOT 1000HAB A 1.31 NA NURSE TOT 1000HAB A 1.99 NA North America NA Mexico, United Mexican States MX 484
668 MEX 1993 MEDICALDOC TOT 1000HAB A 1.46 NA NURSE TOT 1000HAB A 2.03 NA North America NA Mexico, United Mexican States MX 484
669 MEX 1994 MEDICALDOC TOT 1000HAB A 1.56 NA NURSE TOT 1000HAB A 2.09 NA North America NA Mexico, United Mexican States MX 484
670 MEX 1995 MEDICALDOC TOT 1000HAB A 1.65 NA NURSE TOT 1000HAB A 2.13 NA North America NA Mexico, United Mexican States MX 484
671 MEX 1996 MEDICALDOC TOT 1000HAB A 1.65 NA NURSE TOT 1000HAB A 2.12 NA North America NA Mexico, United Mexican States MX 484
672 MEX 1997 MEDICALDOC TOT 1000HAB A 1.69 NA NURSE TOT 1000HAB A 2.10 NA North America NA Mexico, United Mexican States MX 484
673 MEX 1998 MEDICALDOC TOT 1000HAB A 1.71 NA NURSE TOT 1000HAB A 2.14 NA North America NA Mexico, United Mexican States MX 484
674 MEX 1999 MEDICALDOC TOT 1000HAB A 1.71 NA NURSE TOT 1000HAB A 2.19 NA North America NA Mexico, United Mexican States MX 484
675 MEX 2000 MEDICALDOC TOT 1000HAB A 1.63 NA NURSE TOT 1000HAB A 2.23 NA North America NA Mexico, United Mexican States MX 484
676 MEX 2001 MEDICALDOC TOT 1000HAB A 1.52 NA NURSE TOT 1000HAB A 2.23 NA North America NA Mexico, United Mexican States MX 484
677 MEX 2002 MEDICALDOC TOT 1000HAB A 1.53 NA NURSE TOT 1000HAB A 2.23 NA North America NA Mexico, United Mexican States MX 484
678 MEX 2003 MEDICALDOC TOT 1000HAB A 1.58 NA NURSE TOT 1000HAB A 2.14 NA North America NA Mexico, United Mexican States MX 484
679 MEX 2004 MEDICALDOC TOT 1000HAB A 1.66 NA NURSE TOT 1000HAB A 2.12 NA North America NA Mexico, United Mexican States MX 484
680 MEX 2005 MEDICALDOC TOT 1000HAB A 1.77 NA NURSE TOT 1000HAB A 2.21 NA North America NA Mexico, United Mexican States MX 484
681 MEX 2006 MEDICALDOC TOT 1000HAB A 1.89 NA NURSE TOT 1000HAB A 2.23 NA North America NA Mexico, United Mexican States MX 484
682 MEX 2007 MEDICALDOC TOT 1000HAB A 1.93 NA NURSE TOT 1000HAB A 2.29 NA North America NA Mexico, United Mexican States MX 484
683 MEX 2008 MEDICALDOC TOT 1000HAB A 1.96 NA NURSE TOT 1000HAB A 2.32 NA North America NA Mexico, United Mexican States MX 484
684 MEX 2009 MEDICALDOC TOT 1000HAB A 1.99 NA NURSE TOT 1000HAB A 2.37 NA North America NA Mexico, United Mexican States MX 484
685 MEX 2010 MEDICALDOC TOT 1000HAB A 2.00 NA NURSE TOT 1000HAB A 2.42 NA North America NA Mexico, United Mexican States MX 484
686 MEX 2011 MEDICALDOC TOT 1000HAB A 2.11 NA NURSE TOT 1000HAB A 2.52 NA North America NA Mexico, United Mexican States MX 484
687 MEX 2012 MEDICALDOC TOT 1000HAB A 2.12 NA NURSE TOT 1000HAB A 2.56 NA North America NA Mexico, United Mexican States MX 484
688 MEX 2013 MEDICALDOC TOT 1000HAB A 2.16 NA NURSE TOT 1000HAB A 2.62 NA North America NA Mexico, United Mexican States MX 484
689 MEX 2014 MEDICALDOC TOT 1000HAB A 2.23 NA NURSE TOT 1000HAB A 2.69 NA North America NA Mexico, United Mexican States MX 484
690 MEX 2015 MEDICALDOC TOT 1000HAB A 2.33 NA NURSE TOT 1000HAB A 2.77 NA North America NA Mexico, United Mexican States MX 484
691 MEX 2016 MEDICALDOC TOT 1000HAB A 2.34 NA NURSE TOT 1000HAB A 2.87 NA North America NA Mexico, United Mexican States MX 484
692 MEX 2017 MEDICALDOC TOT 1000HAB A 2.40 NA NURSE TOT 1000HAB A 2.87 NA North America NA Mexico, United Mexican States MX 484
693 MEX 2018 MEDICALDOC TOT 1000HAB A 2.44 NA NURSE TOT 1000HAB A 2.87 NA North America NA Mexico, United Mexican States MX 484
694 MEX 2019 MEDICALDOC TOT 1000HAB A 2.44 NA NURSE TOT 1000HAB A 2.85 NA North America NA Mexico, United Mexican States MX 484
695 MEX 2020 MEDICALDOC TOT 1000HAB A 2.41 NA NURSE TOT 1000HAB A 2.91 NA North America NA Mexico, United Mexican States MX 484
696 MEX 2021 MEDICALDOC TOT 1000HAB A 2.51 NA NURSE TOT 1000HAB A 2.94 NA North America NA Mexico, United Mexican States MX 484
976 USA 1999 MEDICALDOC TOT 1000HAB A 2.24 NA NURSE TOT 1000HAB A 10.37 NA North America NA United States of America US 840
977 USA 2000 MEDICALDOC TOT 1000HAB A 2.29 NA NURSE TOT 1000HAB A 10.17 NA North America NA United States of America US 840
978 USA 2001 MEDICALDOC TOT 1000HAB A 2.35 NA NURSE TOT 1000HAB A 10.18 NA North America NA United States of America US 840
979 USA 2002 MEDICALDOC TOT 1000HAB A 2.35 NA NURSE TOT 1000HAB A 10.19 NA North America NA United States of America US 840
980 USA 2003 MEDICALDOC TOT 1000HAB A 2.38 NA NURSE TOT 1000HAB A 10.10 NA North America NA United States of America US 840
981 USA 2004 MEDICALDOC TOT 1000HAB A 2.39 NA NURSE TOT 1000HAB A 10.30 NA North America NA United States of America US 840
982 USA 2005 MEDICALDOC TOT 1000HAB A 2.43 NA NURSE TOT 1000HAB A 10.42 NA North America NA United States of America US 840
983 USA 2006 MEDICALDOC TOT 1000HAB A 2.42 NA NURSE TOT 1000HAB A 10.52 NA North America NA United States of America US 840
984 USA 2007 MEDICALDOC TOT 1000HAB A 2.43 NA NURSE TOT 1000HAB A 10.58 NA North America NA United States of America US 840
985 USA 2008 MEDICALDOC TOT 1000HAB A 2.44 NA NURSE TOT 1000HAB A 10.76 NA North America NA United States of America US 840
986 USA 2009 MEDICALDOC TOT 1000HAB A 2.44 NA NURSE TOT 1000HAB A 10.80 NA North America NA United States of America US 840
987 USA 2010 MEDICALDOC TOT 1000HAB A 2.43 NA NURSE TOT 1000HAB A 10.94 NA North America NA United States of America US 840
988 USA 2011 MEDICALDOC TOT 1000HAB A 2.46 NA NURSE TOT 1000HAB A 11.08 NA North America NA United States of America US 840
989 USA 2012 MEDICALDOC TOT 1000HAB A 2.50 NA NURSE TOT 1000HAB A 11.15 NA North America NA United States of America US 840
990 USA 2013 MEDICALDOC TOT 1000HAB A 2.56 NA NURSE TOT 1000HAB A 11.14 NA North America NA United States of America US 840
991 USA 2014 MEDICALDOC TOT 1000HAB A 2.58 NA NURSE TOT 1000HAB A 11.18 NA North America NA United States of America US 840
992 USA 2015 MEDICALDOC TOT 1000HAB A 2.58 NA NURSE TOT 1000HAB A 11.31 NA North America NA United States of America US 840
993 USA 2016 MEDICALDOC TOT 1000HAB A 2.59 NA NURSE TOT 1000HAB A 11.63 NA North America NA United States of America US 840
994 USA 2017 MEDICALDOC TOT 1000HAB A 2.61 NA NURSE TOT 1000HAB A 11.76 NA North America NA United States of America US 840
995 USA 2018 MEDICALDOC TOT 1000HAB A 2.61 NA NURSE TOT 1000HAB A 11.88 NA North America NA United States of America US 840
996 USA 2019 MEDICALDOC TOT 1000HAB A 2.64 NA NURSE TOT 1000HAB A 11.97 NA North America NA United States of America US 840
997 USA 2020 MEDICALDOC TOT 1000HAB A 2.63 NA NURSE TOT 1000HAB A 11.83 B North America NA United States of America US 840
998 USA 2021 MEDICALDOC TOT 1000HAB A 2.67 NA NURSE TOT 1000HAB A 11.98 NA North America NA United States of America US 840

Έτσι γράφουμε:

DocNurcEythAm <- ggplot(DocNurcAm, aes(x = Value.y, y = Value.x, color=LOCATION))
DocNurcEythAm + geom_point() + geom_smooth(method='lm')
## `geom_smooth()` using formula = 'y ~ x'

Έτσι έχουμε τις ευθείες γραμμικής παλινδρόμησης για κάθε χώρα της Βορείου Αμερικής. Παρατηρούμε την έντονη γραμμική σύνδεση γιατρών-νοσοκόμων σε κάθε χώρα. Ίσως η κοινή ύπαρξη ευθειών ευθείες να αντικατοπτρίζει μια κοινή προσέγγιση στο σύστημα υγείας, η οποία να εξειδικεύεται διαφορετικά σε κάθε περίπτωση, εξ ου και οι διαφορετικές ευθείες.

1.1 Τυπικό σφάλμα εκτίμησης

Προφανώς, η σχέση \([giatroi]=1.9248+0.1308\cdot[nosok]\) κάνει μια εκτίμηση του αριθμού των γιατρών, δεδομένου του αριθμού των νοσοκόμων. Δεν δίνει ακριβή τιμή για το πλήθος των γιατρών. Συνεπώς θα θέλαμε να ξέρουμε πόσο έξω πέφτει η πρόβλεψή μας από την πραγματικότητα. Αυτή τη δουλειά την κάνει το τυπικό σφάλμα εκτίμησης, και για να υπολογιστεί αυτό στην R γράφουμε:

GramGiatNos <- lm(giatroi ~ nosok)
summary(GramGiatNos)
## 
## Call:
## lm(formula = giatroi ~ nosok)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.86940 -0.60321 -0.08686  0.57112  2.39898 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.924824   0.055397   34.75   <2e-16 ***
## nosok       0.130831   0.006399   20.45   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.815 on 950 degrees of freedom
## Multiple R-squared:  0.3056, Adjusted R-squared:  0.3049 
## F-statistic: 418.1 on 1 and 950 DF,  p-value: < 2.2e-16

οπότε παίρνουμε την απάντηση Residual standard error: 0.815. Αυτό σημαίνει ότι (βλ. και ενότητα Απομονωμένα σημεία) ότι σχεδόν όλες οι μετρήσεις (περίπου το 88.8%) θα είναι σε απόσταση \(\pm 3\cdot 0.815\) από αυτήν που προβλέπει η ευθεία γραμμικής παλινδρόμησης.

2 Ποσοστημοριακή παλινδρόμηση

Δυστυχώς, η ευθεία γραμμικής παλινδρόμησης είναι αρκετά ευαίσθητη στα απομονωμένα σημεία. Η ύπαρξη αρκετών τέτοιων μειώνει πολύ την περιγραφική της δύναμη. Γι’ αυτό το λόγο έχουμε και μια άλλη ευθεία. Την ευθεία ποσοστημοριακής παλινδρόμησης.

Ευθεία ποσοστημοριακής παλινδρόμησης
Η ευθεία ποσοστημοριακής παλινδρόμησης σχεδιάστηκε να προσεγγίζει τις διαμέσους ενός μεγέθους (πχ του αριθμού των γιατρών) δεδομένης της εκάστοτε τιμής ενός άλλου μεγέθους (πχ του αριθμού των νοσοκόμων).

Για να πετύχουμε αυτό το στόχο στην R, θα χρησιμοποιήσουμε το πακέτο quantreg γράφοντας:

if(!require(quantreg)){
    install.packages("quantreg")
    library(quantreg)
}

και ακολούθως:

rq(giatroi ~ nosok)
## Call:
## rq(formula = giatroi ~ nosok)
## 
## Coefficients:
## (Intercept)       nosok 
##   1.6962080   0.1466408 
## 
## Degrees of freedom: 952 total; 950 residual

δηλαδή ότι:

\[[giatroi]=1.6962080+0.1466408\cdot[nosok]\]

Το ίδιο μπορούμε να κάνουμε και με άλλα μέτρα θέσης, συγγενικά προς την διάμεσο, τα ποσοστημόρια (βλ. ενότητα Τεταρτημόρια – Ποσοστημόρια). Θέλοντας μία ευθεία που να προσεγγίζει π.χ. το 0.15-ποσοστημόριο μπορούμε να συμπληρώσουμε την παράμετρο tau=, δηλαδή γράφουμε:

rq(giatroi ~ nosok, tau = 0.15)
## Call:
## rq(formula = giatroi ~ nosok, tau = 0.15)
## 
## Coefficients:
## (Intercept)       nosok 
##   1.0584211   0.1342642 
## 
## Degrees of freedom: 952 total; 950 residual

δηλαδή αν πχ έχουμε 2.23 νοσοκόμους ανά χίλιους κατοίκους, τότε υπολογίζοντας

\[1.0584211+ 0.1342642\cdot2.23=1.35783\]

βρίσκουμε ότι κάτω από 1.35783 γιατροί ανά χίλιους κατοίκους είναι στο χαμηλότερο 15% αυτών που αντιστοιχούν στους 2.23 νοσοκόμους.

Οι σχέσεις:

\[[giatroi]=1.6962080+0.1466408\cdot[nosok]\]

\[[giatroi]=1.0584211+ 0.1342642\cdot[nosok]\]

που βρήκαμε γράφουμε, ονομάζονται ποσοστημοριακές γραμμικές παρεμβολές για τ=0.5 (tau=0.5) και τ=0.15 (tau=0.15) αντίστοιχα. Για να σχεδιάσουμε τις ευθείες ποσοστημοριακής παλινδρόμησης όπως και πριν γράφουμε:

plot(giatroi ~ nosok) 
abline(rq(giatroi ~ nosok), col="red")
abline(rq(giatroi ~ nosok, tau = 0.15), col="blue")

Συνολικά ο κώδικας που γράψαμε είναι ο:

rm(list = ls())
DocNurc <- merge(doctorsPer1000,nurcesPer1000,by=c("LOCATION","TIME"))
giatroi <- DocNurc$Value.x
nosok <- DocNurc$Value.y
cor(giatroi,nosok)
lm(giatroi ~ nosok)
plot(giatroi ~ nosok)
abline(lm(giatroi ~ nosok), col = "red")
if(!require(ggplot2)){
    install.packages("ggplot2")
    library(ggplot2)
}
DocNurcEyth <- ggplot(DocNurc, aes(x = nosok, y = giatroi))
DocNurcEyth + geom_smooth(method='lm')
DocNurcEyth + geom_point() + geom_smooth(method='lm')
names(XoresHpiroi2)[names(XoresHpiroi2) == "Three_Letter_Country_Code"] <- "LOCATION"
DocNurcCont <- merge(DocNurc,XoresHpiroi2,by = "LOCATION")
DocNurcAm <- DocNurcCont[DocNurcCont$Continent_Name == "South America" | DocNurcCont$Continent_Name == "North America", ]
DocNurcEythAm <- ggplot(DocNurcAm, aes(x = Value.y, y = Value.x, color=LOCATION))
DocNurcEythAm + geom_point() + geom_smooth(method='lm')
GramGiatNos <- lm(giatroi ~ nosok)
summary(GramGiatNos)
if(!require(quantreg)){
    install.packages("quantreg")
    library(quantreg)
}
rq(giatroi ~ nosok)
rq(giatroi ~ nosok, tau = 0.15)
plot(giatroi ~ nosok) 
abline(rq(giatroi ~ nosok), col="red")
abline(rq(giatroi ~ nosok, tau = 0.15), col="blue")