Στην παρούσα υποενότητα θα χρησιμοποιήσουμε δεδομένα του OECD για τον αριθμό των γιατρών και των νοσοκόμων ανά χίλιους κατοίκους (βλ. εδώ κι εδώ). Αυτά αποθηκεύτηκαν στα αρχεία doctorsPer1000.csv και nurcesPer1000.csv. Εδώ παραθέτουμε τα 100 πρώτα στοιχεία κάθε πίνακα, για λόγους ταχύτητας εκτέλεσης του κώδικα. Φυσικά, πρώτα διαγράψαμε τις μεταβλητές της προηγούμενης ενότητας:
| LOCATION | INDICATOR | SUBJECT | MEASURE | FREQUENCY | TIME | Value | Flag.Codes |
|---|---|---|---|---|---|---|---|
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1961 | 1.13 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1964 | 1.23 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1965 | 1.22 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1966 | 1.23 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1967 | 1.26 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1968 | 1.24 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1969 | 1.26 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1970 | 1.33 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1971 | 1.26 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1972 | 1.38 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1973 | 1.35 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1974 | 1.42 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1975 | 1.48 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1976 | 1.64 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1977 | 1.65 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1978 | 1.85 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1979 | 1.78 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1980 | 1.85 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1981 | 1.86 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1982 | 1.90 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1983 | 1.95 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1984 | 1.83 | B |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1985 | 1.91 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1986 | 2.01 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1987 | 2.06 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1988 | 2.10 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1989 | 2.14 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1990 | 2.17 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1991 | 2.33 | B |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1992 | 2.37 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1993 | 2.40 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1994 | 2.44 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1995 | 2.48 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1996 | 2.40 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1997 | 2.40 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1998 | 2.40 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 1999 | 2.45 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2000 | 2.49 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2001 | 2.56 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2002 | 2.56 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2003 | 2.63 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2004 | 2.71 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2005 | 2.78 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2006 | 2.84 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2007 | 3.01 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2008 | 3.02 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2009 | 3.12 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2011 | 3.32 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2012 | 3.31 | E |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2013 | 3.37 | NA |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2014 | 3.45 | E |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2015 | 3.51 | E |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2016 | 3.58 | E |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2017 | 3.68 | E |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2018 | 3.75 | E |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2019 | 3.83 | E |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2020 | 3.91 | E |
| AUS | MEDICALDOC | TOT | 1000HAB | A | 2021 | 4.02 | E |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1960 | 1.59 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1961 | 1.58 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1962 | 1.57 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1963 | 1.56 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1964 | 1.56 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1965 | 1.56 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1966 | 1.57 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1967 | 1.58 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1968 | 1.60 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1969 | 1.63 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1970 | 1.67 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1971 | 1.70 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1972 | 1.71 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1973 | 1.76 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1974 | 1.81 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1975 | 1.87 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1976 | 1.95 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1977 | 2.01 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1978 | 2.07 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1979 | 2.14 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1980 | 2.21 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1981 | 2.27 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1982 | 2.33 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1983 | 2.42 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1984 | 2.50 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1985 | 2.57 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1986 | 2.67 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1987 | 2.70 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1988 | 2.80 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1989 | 2.90 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1990 | 3.01 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1991 | 3.09 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1992 | 3.21 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1993 | 3.30 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1994 | 3.41 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1995 | 3.51 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1996 | 3.58 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1997 | 3.66 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1998 | 3.77 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 1999 | 3.77 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 2000 | 3.85 | NA |
| AUT | MEDICALDOC | TOT | 1000HAB | A | 2001 | 3.96 | NA |
| LOCATION | INDICATOR | SUBJECT | MEASURE | FREQUENCY | TIME | Value | Flag.Codes |
|---|---|---|---|---|---|---|---|
| AUS | NURSE | TOT | 1000HAB | A | 1980 | 10.33 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1981 | 9.91 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1982 | 9.85 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1983 | 9.87 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1984 | 9.91 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1985 | 9.55 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1986 | 10.92 | B |
| AUS | NURSE | TOT | 1000HAB | A | 1987 | 11.37 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1988 | 11.60 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1989 | 11.72 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1990 | 11.63 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1991 | 12.08 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1992 | 11.57 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1993 | 11.10 | B |
| AUS | NURSE | TOT | 1000HAB | A | 1994 | 11.50 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1995 | 10.84 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1996 | 10.83 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1997 | 10.41 | B |
| AUS | NURSE | TOT | 1000HAB | A | 1998 | 10.30 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 1999 | 10.17 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2000 | 10.07 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2001 | 9.95 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2002 | 9.94 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2003 | 9.94 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2004 | 10.21 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2005 | 9.76 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2007 | 10.20 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2008 | 10.30 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2009 | 10.18 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2011 | 10.19 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2012 | 10.22 | E |
| AUS | NURSE | TOT | 1000HAB | A | 2013 | 11.12 | NA |
| AUS | NURSE | TOT | 1000HAB | A | 2014 | 11.28 | E |
| AUS | NURSE | TOT | 1000HAB | A | 2015 | 11.39 | E |
| AUS | NURSE | TOT | 1000HAB | A | 2016 | 11.57 | E |
| AUS | NURSE | TOT | 1000HAB | A | 2017 | 11.69 | E |
| AUS | NURSE | TOT | 1000HAB | A | 2018 | 11.93 | E |
| AUS | NURSE | TOT | 1000HAB | A | 2019 | 12.23 | E |
| AUS | NURSE | TOT | 1000HAB | A | 2020 | 12.28 | E |
| AUS | NURSE | TOT | 1000HAB | A | 2021 | 12.81 | E |
| AUT | NURSE | TOT | 1000HAB | A | 1985 | 3.41 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1986 | 3.56 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1987 | 3.69 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1988 | 3.67 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1989 | 3.82 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1990 | 3.91 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1991 | 4.02 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1992 | 4.19 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1993 | 4.43 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1994 | 4.75 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1995 | 4.95 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1996 | 5.06 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1997 | 5.19 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1998 | 5.27 | D |
| AUT | NURSE | TOT | 1000HAB | A | 1999 | 5.42 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2000 | 5.55 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2001 | 5.58 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2002 | 5.68 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2003 | 5.68 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2004 | 5.93 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2005 | 5.99 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2006 | 6.14 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2007 | 6.21 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2008 | 6.36 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2009 | 6.47 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2010 | 6.53 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2011 | 6.62 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2012 | 6.65 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2013 | 6.69 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2014 | 6.79 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2015 | 6.80 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2016 | 6.77 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2017 | 6.85 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2018 | 6.85 | D |
| AUT | NURSE | TOT | 1000HAB | A | 2019 | 10.30 | B |
| AUT | NURSE | TOT | 1000HAB | A | 2020 | 10.32 | NA |
| AUT | NURSE | TOT | 1000HAB | A | 2021 | 10.60 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2003 | 8.51 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2004 | 8.51 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2005 | 8.73 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2006 | 8.84 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2007 | 9.04 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2008 | 9.16 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2009 | 9.32 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2010 | 9.37 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2011 | 9.29 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2012 | 9.40 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2013 | 9.54 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2014 | 9.81 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2015 | 9.91 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2016 | 9.96 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2017 | 10.00 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2018 | 9.95 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2019 | 9.98 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2020 | 10.06 | NA |
| CAN | NURSE | TOT | 1000HAB | A | 2021 | 10.25 | NA |
| CZE | NURSE | TOT | 1000HAB | A | 1980 | 5.95 | NA |
| CZE | NURSE | TOT | 1000HAB | A | 1981 | 6.09 | NA |
| CZE | NURSE | TOT | 1000HAB | A | 1982 | 6.26 | NA |
| CZE | NURSE | TOT | 1000HAB | A | 1983 | 6.41 | NA |
Αυτά ενοποιήθηκαν, κατά τα γνωστά (βλ. υποενότητα «Συγχώνευση πινάκων δίπλα-δίπλα» της Προσθήκη στοιχείων σε πίνακα), γράφοντας:
| LOCATION | TIME | INDICATOR.x | SUBJECT.x | MEASURE.x | FREQUENCY.x | Value.x | Flag.Codes.x | INDICATOR.y | SUBJECT.y | MEASURE.y | FREQUENCY.y | Value.y | Flag.Codes.y |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AUS | 1980 | MEDICALDOC | TOT | 1000HAB | A | 1.85 | NA | NURSE | TOT | 1000HAB | A | 10.33 | NA |
| AUS | 1981 | MEDICALDOC | TOT | 1000HAB | A | 1.86 | NA | NURSE | TOT | 1000HAB | A | 9.91 | NA |
| AUS | 1982 | MEDICALDOC | TOT | 1000HAB | A | 1.90 | NA | NURSE | TOT | 1000HAB | A | 9.85 | NA |
| AUS | 1983 | MEDICALDOC | TOT | 1000HAB | A | 1.95 | NA | NURSE | TOT | 1000HAB | A | 9.87 | NA |
| AUS | 1984 | MEDICALDOC | TOT | 1000HAB | A | 1.83 | B | NURSE | TOT | 1000HAB | A | 9.91 | NA |
| AUS | 1985 | MEDICALDOC | TOT | 1000HAB | A | 1.91 | NA | NURSE | TOT | 1000HAB | A | 9.55 | NA |
| AUS | 1986 | MEDICALDOC | TOT | 1000HAB | A | 2.01 | NA | NURSE | TOT | 1000HAB | A | 10.92 | B |
| AUS | 1987 | MEDICALDOC | TOT | 1000HAB | A | 2.06 | NA | NURSE | TOT | 1000HAB | A | 11.37 | NA |
| AUS | 1988 | MEDICALDOC | TOT | 1000HAB | A | 2.10 | NA | NURSE | TOT | 1000HAB | A | 11.60 | NA |
| AUS | 1989 | MEDICALDOC | TOT | 1000HAB | A | 2.14 | NA | NURSE | TOT | 1000HAB | A | 11.72 | NA |
| AUS | 1990 | MEDICALDOC | TOT | 1000HAB | A | 2.17 | NA | NURSE | TOT | 1000HAB | A | 11.63 | NA |
| AUS | 1991 | MEDICALDOC | TOT | 1000HAB | A | 2.33 | B | NURSE | TOT | 1000HAB | A | 12.08 | NA |
| AUS | 1992 | MEDICALDOC | TOT | 1000HAB | A | 2.37 | NA | NURSE | TOT | 1000HAB | A | 11.57 | NA |
| AUS | 1993 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 11.10 | B |
| AUS | 1994 | MEDICALDOC | TOT | 1000HAB | A | 2.44 | NA | NURSE | TOT | 1000HAB | A | 11.50 | NA |
| AUS | 1995 | MEDICALDOC | TOT | 1000HAB | A | 2.48 | NA | NURSE | TOT | 1000HAB | A | 10.84 | NA |
| AUS | 1996 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 10.83 | NA |
| AUS | 1997 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 10.41 | B |
| AUS | 1998 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 10.30 | NA |
| AUS | 1999 | MEDICALDOC | TOT | 1000HAB | A | 2.45 | NA | NURSE | TOT | 1000HAB | A | 10.17 | NA |
| AUS | 2000 | MEDICALDOC | TOT | 1000HAB | A | 2.49 | NA | NURSE | TOT | 1000HAB | A | 10.07 | NA |
| AUS | 2001 | MEDICALDOC | TOT | 1000HAB | A | 2.56 | NA | NURSE | TOT | 1000HAB | A | 9.95 | NA |
| AUS | 2002 | MEDICALDOC | TOT | 1000HAB | A | 2.56 | NA | NURSE | TOT | 1000HAB | A | 9.94 | NA |
| AUS | 2003 | MEDICALDOC | TOT | 1000HAB | A | 2.63 | NA | NURSE | TOT | 1000HAB | A | 9.94 | NA |
| AUS | 2004 | MEDICALDOC | TOT | 1000HAB | A | 2.71 | NA | NURSE | TOT | 1000HAB | A | 10.21 | NA |
| AUS | 2005 | MEDICALDOC | TOT | 1000HAB | A | 2.78 | NA | NURSE | TOT | 1000HAB | A | 9.76 | NA |
| AUS | 2007 | MEDICALDOC | TOT | 1000HAB | A | 3.01 | NA | NURSE | TOT | 1000HAB | A | 10.20 | NA |
| AUS | 2008 | MEDICALDOC | TOT | 1000HAB | A | 3.02 | NA | NURSE | TOT | 1000HAB | A | 10.30 | NA |
| AUS | 2009 | MEDICALDOC | TOT | 1000HAB | A | 3.12 | NA | NURSE | TOT | 1000HAB | A | 10.18 | NA |
| AUS | 2011 | MEDICALDOC | TOT | 1000HAB | A | 3.32 | NA | NURSE | TOT | 1000HAB | A | 10.19 | NA |
| AUS | 2012 | MEDICALDOC | TOT | 1000HAB | A | 3.31 | E | NURSE | TOT | 1000HAB | A | 10.22 | E |
| AUS | 2013 | MEDICALDOC | TOT | 1000HAB | A | 3.37 | NA | NURSE | TOT | 1000HAB | A | 11.12 | NA |
| AUS | 2014 | MEDICALDOC | TOT | 1000HAB | A | 3.45 | E | NURSE | TOT | 1000HAB | A | 11.28 | E |
| AUS | 2015 | MEDICALDOC | TOT | 1000HAB | A | 3.51 | E | NURSE | TOT | 1000HAB | A | 11.39 | E |
| AUS | 2016 | MEDICALDOC | TOT | 1000HAB | A | 3.58 | E | NURSE | TOT | 1000HAB | A | 11.57 | E |
| AUS | 2017 | MEDICALDOC | TOT | 1000HAB | A | 3.68 | E | NURSE | TOT | 1000HAB | A | 11.69 | E |
| AUS | 2018 | MEDICALDOC | TOT | 1000HAB | A | 3.75 | E | NURSE | TOT | 1000HAB | A | 11.93 | E |
| AUS | 2019 | MEDICALDOC | TOT | 1000HAB | A | 3.83 | E | NURSE | TOT | 1000HAB | A | 12.23 | E |
| AUS | 2020 | MEDICALDOC | TOT | 1000HAB | A | 3.91 | E | NURSE | TOT | 1000HAB | A | 12.28 | E |
| AUS | 2021 | MEDICALDOC | TOT | 1000HAB | A | 4.02 | E | NURSE | TOT | 1000HAB | A | 12.81 | E |
| AUT | 1985 | MEDICALDOC | TOT | 1000HAB | A | 2.57 | NA | NURSE | TOT | 1000HAB | A | 3.41 | D |
| AUT | 1986 | MEDICALDOC | TOT | 1000HAB | A | 2.67 | NA | NURSE | TOT | 1000HAB | A | 3.56 | D |
| AUT | 1987 | MEDICALDOC | TOT | 1000HAB | A | 2.70 | NA | NURSE | TOT | 1000HAB | A | 3.69 | D |
| AUT | 1988 | MEDICALDOC | TOT | 1000HAB | A | 2.80 | NA | NURSE | TOT | 1000HAB | A | 3.67 | D |
| AUT | 1989 | MEDICALDOC | TOT | 1000HAB | A | 2.90 | NA | NURSE | TOT | 1000HAB | A | 3.82 | D |
| AUT | 1990 | MEDICALDOC | TOT | 1000HAB | A | 3.01 | NA | NURSE | TOT | 1000HAB | A | 3.91 | D |
| AUT | 1991 | MEDICALDOC | TOT | 1000HAB | A | 3.09 | NA | NURSE | TOT | 1000HAB | A | 4.02 | D |
| AUT | 1992 | MEDICALDOC | TOT | 1000HAB | A | 3.21 | NA | NURSE | TOT | 1000HAB | A | 4.19 | D |
| AUT | 1993 | MEDICALDOC | TOT | 1000HAB | A | 3.30 | NA | NURSE | TOT | 1000HAB | A | 4.43 | D |
| AUT | 1994 | MEDICALDOC | TOT | 1000HAB | A | 3.41 | NA | NURSE | TOT | 1000HAB | A | 4.75 | D |
| AUT | 1995 | MEDICALDOC | TOT | 1000HAB | A | 3.51 | NA | NURSE | TOT | 1000HAB | A | 4.95 | D |
| AUT | 1996 | MEDICALDOC | TOT | 1000HAB | A | 3.58 | NA | NURSE | TOT | 1000HAB | A | 5.06 | D |
| AUT | 1997 | MEDICALDOC | TOT | 1000HAB | A | 3.66 | NA | NURSE | TOT | 1000HAB | A | 5.19 | D |
| AUT | 1998 | MEDICALDOC | TOT | 1000HAB | A | 3.77 | NA | NURSE | TOT | 1000HAB | A | 5.27 | D |
| AUT | 1999 | MEDICALDOC | TOT | 1000HAB | A | 3.77 | NA | NURSE | TOT | 1000HAB | A | 5.42 | D |
| AUT | 2000 | MEDICALDOC | TOT | 1000HAB | A | 3.85 | NA | NURSE | TOT | 1000HAB | A | 5.55 | D |
| AUT | 2001 | MEDICALDOC | TOT | 1000HAB | A | 3.96 | NA | NURSE | TOT | 1000HAB | A | 5.58 | D |
| AUT | 2002 | MEDICALDOC | TOT | 1000HAB | A | 4.03 | NA | NURSE | TOT | 1000HAB | A | 5.68 | D |
| AUT | 2003 | MEDICALDOC | TOT | 1000HAB | A | 4.11 | NA | NURSE | TOT | 1000HAB | A | 5.68 | D |
| AUT | 2004 | MEDICALDOC | TOT | 1000HAB | A | 4.20 | NA | NURSE | TOT | 1000HAB | A | 5.93 | D |
| AUT | 2005 | MEDICALDOC | TOT | 1000HAB | A | 4.32 | NA | NURSE | TOT | 1000HAB | A | 5.99 | D |
| AUT | 2006 | MEDICALDOC | TOT | 1000HAB | A | 4.45 | NA | NURSE | TOT | 1000HAB | A | 6.14 | D |
| AUT | 2007 | MEDICALDOC | TOT | 1000HAB | A | 4.52 | B | NURSE | TOT | 1000HAB | A | 6.21 | D |
| AUT | 2008 | MEDICALDOC | TOT | 1000HAB | A | 4.59 | NA | NURSE | TOT | 1000HAB | A | 6.36 | D |
| AUT | 2009 | MEDICALDOC | TOT | 1000HAB | A | 4.67 | NA | NURSE | TOT | 1000HAB | A | 6.47 | D |
| AUT | 2010 | MEDICALDOC | TOT | 1000HAB | A | 4.77 | NA | NURSE | TOT | 1000HAB | A | 6.53 | D |
| AUT | 2011 | MEDICALDOC | TOT | 1000HAB | A | 4.82 | NA | NURSE | TOT | 1000HAB | A | 6.62 | D |
| AUT | 2012 | MEDICALDOC | TOT | 1000HAB | A | 4.87 | NA | NURSE | TOT | 1000HAB | A | 6.65 | D |
| AUT | 2013 | MEDICALDOC | TOT | 1000HAB | A | 4.96 | B | NURSE | TOT | 1000HAB | A | 6.69 | D |
| AUT | 2014 | MEDICALDOC | TOT | 1000HAB | A | 5.02 | NA | NURSE | TOT | 1000HAB | A | 6.79 | D |
| AUT | 2015 | MEDICALDOC | TOT | 1000HAB | A | 5.06 | NA | NURSE | TOT | 1000HAB | A | 6.80 | D |
| AUT | 2016 | MEDICALDOC | TOT | 1000HAB | A | 5.11 | NA | NURSE | TOT | 1000HAB | A | 6.77 | D |
| AUT | 2017 | MEDICALDOC | TOT | 1000HAB | A | 5.16 | NA | NURSE | TOT | 1000HAB | A | 6.85 | D |
| AUT | 2018 | MEDICALDOC | TOT | 1000HAB | A | 5.22 | NA | NURSE | TOT | 1000HAB | A | 6.85 | D |
| AUT | 2019 | MEDICALDOC | TOT | 1000HAB | A | 5.29 | NA | NURSE | TOT | 1000HAB | A | 10.30 | B |
| AUT | 2020 | MEDICALDOC | TOT | 1000HAB | A | 5.32 | NA | NURSE | TOT | 1000HAB | A | 10.32 | NA |
| AUT | 2021 | MEDICALDOC | TOT | 1000HAB | A | 5.41 | NA | NURSE | TOT | 1000HAB | A | 10.60 | NA |
| BEL | 2004 | MEDICALDOC | TOT | 1000HAB | A | 2.87 | NA | NURSE | TOT | 1000HAB | A | 8.79 | E |
| BEL | 2005 | MEDICALDOC | TOT | 1000HAB | A | 2.87 | NA | NURSE | TOT | 1000HAB | A | 9.01 | E |
| BEL | 2006 | MEDICALDOC | TOT | 1000HAB | A | 2.89 | NA | NURSE | TOT | 1000HAB | A | 9.12 | E |
| BEL | 2007 | MEDICALDOC | TOT | 1000HAB | A | 2.91 | NA | NURSE | TOT | 1000HAB | A | 9.24 | E |
| BEL | 2008 | MEDICALDOC | TOT | 1000HAB | A | 2.92 | NA | NURSE | TOT | 1000HAB | A | 9.32 | E |
| BEL | 2009 | MEDICALDOC | TOT | 1000HAB | A | 2.92 | NA | NURSE | TOT | 1000HAB | A | 9.42 | NA |
| BEL | 2010 | MEDICALDOC | TOT | 1000HAB | A | 2.92 | NA | NURSE | TOT | 1000HAB | A | 9.59 | E |
| BEL | 2011 | MEDICALDOC | TOT | 1000HAB | A | 2.92 | NA | NURSE | TOT | 1000HAB | A | 9.81 | E |
| BEL | 2012 | MEDICALDOC | TOT | 1000HAB | A | 2.93 | NA | NURSE | TOT | 1000HAB | A | 10.02 | E |
| BEL | 2013 | MEDICALDOC | TOT | 1000HAB | A | 2.96 | NA | NURSE | TOT | 1000HAB | A | 10.30 | E |
| BEL | 2014 | MEDICALDOC | TOT | 1000HAB | A | 2.98 | NA | NURSE | TOT | 1000HAB | A | 10.58 | E |
| BEL | 2015 | MEDICALDOC | TOT | 1000HAB | A | 3.02 | NA | NURSE | TOT | 1000HAB | A | 10.83 | E |
| BEL | 2016 | MEDICALDOC | TOT | 1000HAB | A | 3.07 | NA | NURSE | TOT | 1000HAB | A | 10.96 | B |
| BEL | 2017 | MEDICALDOC | TOT | 1000HAB | A | 3.08 | NA | NURSE | TOT | 1000HAB | A | 11.22 | NA |
| BEL | 2018 | MEDICALDOC | TOT | 1000HAB | A | 3.13 | NA | NURSE | TOT | 1000HAB | A | 11.07 | NA |
| BRA | 2007 | MEDICALDOC | TOT | 1000HAB | A | 1.30 | NA | NURSE | TOT | 1000HAB | A | 0.50 | NA |
| BRA | 2008 | MEDICALDOC | TOT | 1000HAB | A | 1.41 | NA | NURSE | TOT | 1000HAB | A | 0.56 | NA |
| BRA | 2009 | MEDICALDOC | TOT | 1000HAB | A | 1.46 | NA | NURSE | TOT | 1000HAB | A | 0.61 | NA |
| BRA | 2010 | MEDICALDOC | TOT | 1000HAB | A | 1.52 | NA | NURSE | TOT | 1000HAB | A | 0.67 | NA |
| BRA | 2011 | MEDICALDOC | TOT | 1000HAB | A | 1.50 | NA | NURSE | TOT | 1000HAB | A | 0.73 | NA |
| BRA | 2012 | MEDICALDOC | TOT | 1000HAB | A | 1.55 | NA | NURSE | TOT | 1000HAB | A | 0.80 | NA |
| BRA | 2013 | MEDICALDOC | TOT | 1000HAB | A | 1.62 | NA | NURSE | TOT | 1000HAB | A | 0.88 | NA |
| BRA | 2014 | MEDICALDOC | TOT | 1000HAB | A | 1.71 | NA | NURSE | TOT | 1000HAB | A | 0.97 | NA |
Είναι αναμενόμενο οι αριθμοί των γιατρών ανά χίλιους κατοίκους και οι αριθμοί των νοσοκόμων θα συσχετίζονται με κάποιον τρόπο. Ποιος είναι άραγε αυτός ο τρόπος; Θα ήταν χρήσιμο να έχουμε έναν μαθηματικό τύπο, όπου δίνοντάς του μια τιμή για τον αριθμό των νοσοκόμων (π.χ. 2 νοσοκόμες ανά χίλιους κατοίκους), να μας υπολογίζει τον αριθμό των γιατρών (εν προκειμένω είναι 1.64 γιατροί ανά χίλιους κατοίκους).
Για να κάνουμε ευκολότερη την μελέτη των δύο ομάδων αριθμών, τους δίνουμε ονόματα μέσω της κλασσικής διαδικασίας:
Το να επιδιώξουμε εδώ την απόλυτη ακρίβεια, περισσότερο θα συσκότιζε την εικόνα που θέλουμε ν’ αποκτήσουμε, παρά θα την ξεκαθάριζε. Η απόλυτη ακρίβεια θα ήταν ένας μαθηματικός τύπος, ιδιαίτερα περίπλοκος και ακατάλληλος για εκτιμήσεις σχέσεων, αλλά και υπολογισμούς προβλέψεων. O πιο απλός τύπος θα ήταν μια γραμμική σχέση:
\[[giatroi]=\alpha+\beta\cdot[nosok]\]
η οποία θα εκφράζει στο περίπου τον αριθμό των γιατρών βάσει του αριθμού των νοσοκόμων. Κερδίσαμε κάτι σε απλότητα τύπου, χάσαμε όμως κάτι σε ακρίβεια. Δεν πειράζει, καλή καρδιά.
Πόσο δυνατόν όμως είναι αυτό; Το πλήθος των γιατρών είναι γραμμικώς συσχετισμένο με το πλήθος των νοσοκόμων; Σύμφωνα με όσα έχουμε πει (βλ. ενότητα Συντελεστής γραμμικής συσχέτισης Pearson), γράφουμε:
## [1] 0.5528042
Βρίσκουμε συντελεστή γραμμικής συσχέτισης Pearson 0.5528042, άρα έχουμε ισχυρή γραμμική συσχέτιση. Επομένως δικαιολογούμαστε να περιμένουμε ότι θα υπάρχει μαθηματικός τύπος σαν τον προηγούμενο που να συνδέει το πλήθος των γιατρών με το πλήθος των νοσοκόμων. Γράφουμε λοιπόν:
##
## Call:
## lm(formula = giatroi ~ nosok)
##
## Coefficients:
## (Intercept) nosok
## 1.9248 0.1308
Αυτό σημαίνει ότι:
\[[giatroi]=1.9248+0.1308\cdot[nosok]\]
Έτσι, μπορούμε να εικάσουμε πως πχ για 2.23 νοσοκόμους ανά χίλιους κατοίκους, θα έχουμε πιθανότατα κατά μέσο όρο:
\[1.9248+0.1308\cdot2.23=2.216484\]
γιατρούς ανά χίλους κατοίκους.
| Ευθεία γραμμικής παλινδρόμησης |
|---|
| Η ευθεία γραμμικής παλινδρόμησης σχεδιάστηκε να προσεγγίζει τις μέσες τιμές ενός μεγέθους (πχ του αριθμού των γιατρών) δεδομένης της εκάστοτε τιμής ενός άλλου μεγέθους (πχ του αριθμού των νοσοκόμων). |
Μια σχέση της μορφής \([giatroi]=1.9248+0.1308\cdot[nosok]\) δεν
αποκαλείται τυχαία «ευθεία γραμμικής παλινδόμησης», διότι, αν τη
σχεδιάσουμε σ’ ένα σύστημα συντεταγμένων (π.χ. εκεί που σχεδιάσαμε το
διάγραμμα διασποράς), θα σχηματίσουν τα σημεία μιας ευθείας γραμμής. Για
να σχεδιαστεί η εν λόγω ευθεία στην θα χρησιμοποιήσουμε την συνάρτηση
abline(). Βέβαια, πριν την σχεδιάσουμε, πρέπει να ’χουμε
ήδη φτιαγμένο ένα σύστημα συντεταγμένων, οπότε γράφουμε (βλ. ενότητα Διάγραμμα
διασποράς):

Πάνω σ’ αυτό το διάγραμμα διασποράς θα σχεδιαστεί η ευθεία της απλής
γραμμικής παλινδρόμησης συμπληρώνοντας από κάτω
abline(lm(giatroi ~ nosok), col = "red"), δηλαδή:

Εναλλακτικά τα παραπάνω μπορούν να γίνουν μέσω της συνάρτησης
geom_smooth() του πακέτου ggplot2
γράφοντας:
if(!require(ggplot2)){
install.packages("ggplot2")
library(ggplot2)
}
DocNurcEyth <- ggplot(DocNurc, aes(x = nosok, y = giatroi))
DocNurcEyth + geom_smooth(method='lm')
Αν θέλουμε να είναι μαζί με το διάγραμμα διασποράς, γράφουμε:
## `geom_smooth()` using formula = 'y ~ x'

Για να δούμε περισσότερες αισθητικές παρεμβάσεις θα χρησιμοποιήσουμε κάποια επιπλέον δεδομένα. Αντλήσαμε από το datahub στοιχεία για τις χώρες και τις ηπείρους που ανήκουν. Τα δεδομένα αποθηκεύτηκαν σ’ ένα αρχείο ονόματι XoresHpiroi2.txt.
| Continent_Name | Continent_Code | Country_Name | Two_Letter_Country_Code | Three_Letter_Country_Code | Country_Number |
|---|---|---|---|---|---|
| Asia | AS | Afghanistan, Islamic Republic of | AF | AFG | 4 |
| Europe | EU | Albania, Republic of | AL | ALB | 8 |
| Antarctica | AN | Antarctica (the territory South of 60 deg S) | AQ | ATA | 10 |
| Africa | AF | Algeria, People’s Democratic Republic of | DZ | DZA | 12 |
| Oceania | OC | American Samoa | AS | ASM | 16 |
| Europe | EU | Andorra, Principality of | AD | AND | 20 |
| Africa | AF | Angola, Republic of | AO | AGO | 24 |
| North America | NA | Antigua and Barbuda | AG | ATG | 28 |
| Europe | EU | Azerbaijan, Republic of | AZ | AZE | 31 |
| Asia | AS | Azerbaijan, Republic of | AZ | AZE | 31 |
| South America | SA | Argentina, Argentine Republic | AR | ARG | 32 |
| Oceania | OC | Australia, Commonwealth of | AU | AUS | 36 |
| Europe | EU | Austria, Republic of | AT | AUT | 40 |
| North America | NA | Bahamas, Commonwealth of the | BS | BHS | 44 |
| Asia | AS | Bahrain, Kingdom of | BH | BHR | 48 |
| Asia | AS | Bangladesh, People’s Republic of | BD | BGD | 50 |
| Europe | EU | Armenia, Republic of | AM | ARM | 51 |
| Asia | AS | Armenia, Republic of | AM | ARM | 51 |
| North America | NA | Barbados | BB | BRB | 52 |
| Europe | EU | Belgium, Kingdom of | BE | BEL | 56 |
| North America | NA | Bermuda | BM | BMU | 60 |
| Asia | AS | Bhutan, Kingdom of | BT | BTN | 64 |
| South America | SA | Bolivia, Republic of | BO | BOL | 68 |
| Europe | EU | Bosnia and Herzegovina | BA | BIH | 70 |
| Africa | AF | Botswana, Republic of | BW | BWA | 72 |
| Antarctica | AN | Bouvet Island (Bouvetoya) | BV | BVT | 74 |
| South America | SA | Brazil, Federative Republic of | BR | BRA | 76 |
| North America | NA | Belize | BZ | BLZ | 84 |
| Asia | AS | British Indian Ocean Territory (Chagos Archipelago) | IO | IOT | 86 |
| Oceania | OC | Solomon Islands | SB | SLB | 90 |
| North America | NA | British Virgin Islands | VG | VGB | 92 |
| Asia | AS | Brunei Darussalam | BN | BRN | 96 |
| Europe | EU | Bulgaria, Republic of | BG | BGR | 100 |
| Asia | AS | Myanmar, Union of | MM | MMR | 104 |
| Africa | AF | Burundi, Republic of | BI | BDI | 108 |
| Europe | EU | Belarus, Republic of | BY | BLR | 112 |
| Asia | AS | Cambodia, Kingdom of | KH | KHM | 116 |
| Africa | AF | Cameroon, Republic of | CM | CMR | 120 |
| North America | NA | Canada | CA | CAN | 124 |
| Africa | AF | Cape Verde, Republic of | CV | CPV | 132 |
| North America | NA | Cayman Islands | KY | CYM | 136 |
| Africa | AF | Central African Republic | CF | CAF | 140 |
| Asia | AS | Sri Lanka, Democratic Socialist Republic of | LK | LKA | 144 |
| Africa | AF | Chad, Republic of | TD | TCD | 148 |
| South America | SA | Chile, Republic of | CL | CHL | 152 |
| Asia | AS | China, People’s Republic of | CN | CHN | 156 |
| Asia | AS | Taiwan | TW | TWN | 158 |
| Asia | AS | Christmas Island | CX | CXR | 162 |
| Asia | AS | Cocos (Keeling) Islands | CC | CCK | 166 |
| South America | SA | Colombia, Republic of | CO | COL | 170 |
| Africa | AF | Comoros, Union of the | KM | COM | 174 |
| Africa | AF | Mayotte | YT | MYT | 175 |
| Africa | AF | Congo, Republic of the | CG | COG | 178 |
| Africa | AF | Congo, Democratic Republic of the | CD | COD | 180 |
| Oceania | OC | Cook Islands | CK | COK | 184 |
| North America | NA | Costa Rica, Republic of | CR | CRI | 188 |
| Europe | EU | Croatia, Republic of | HR | HRV | 191 |
| North America | NA | Cuba, Republic of | CU | CUB | 192 |
| Europe | EU | Cyprus, Republic of | CY | CYP | 196 |
| Asia | AS | Cyprus, Republic of | CY | CYP | 196 |
| Europe | EU | Czech Republic | CZ | CZE | 203 |
| Africa | AF | Benin, Republic of | BJ | BEN | 204 |
| Europe | EU | Denmark, Kingdom of | DK | DNK | 208 |
| North America | NA | Dominica, Commonwealth of | DM | DMA | 212 |
| North America | NA | Dominican Republic | DO | DOM | 214 |
| South America | SA | Ecuador, Republic of | EC | ECU | 218 |
| North America | NA | El Salvador, Republic of | SV | SLV | 222 |
| Africa | AF | Equatorial Guinea, Republic of | GQ | GNQ | 226 |
| Africa | AF | Ethiopia, Federal Democratic Republic of | ET | ETH | 231 |
| Africa | AF | Eritrea, State of | ER | ERI | 232 |
| Europe | EU | Estonia, Republic of | EE | EST | 233 |
| Europe | EU | Faroe Islands | FO | FRO | 234 |
| South America | SA | Falkland Islands (Malvinas) | FK | FLK | 238 |
| Antarctica | AN | South Georgia and the South Sandwich Islands | GS | SGS | 239 |
| Oceania | OC | Fiji, Republic of the Fiji Islands | FJ | FJI | 242 |
| Europe | EU | Finland, Republic of | FI | FIN | 246 |
| Europe | EU | Γ land Islands | |AX | |ALA |
24
|
Αυτά συνενώθηκαν με τον πίνακα DocNurc γράφοντας πρώτα:
για να μετονομάσουμε την στήλη Three_Letter_Country_Code
σε LOCATION
Ακολούθως:
| LOCATION | TIME | INDICATOR.x | SUBJECT.x | MEASURE.x | FREQUENCY.x | Value.x | Flag.Codes.x | INDICATOR.y | SUBJECT.y | MEASURE.y | FREQUENCY.y | Value.y | Flag.Codes.y | Continent_Name | Continent_Code | Country_Name | Two_Letter_Country_Code | Country_Number |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AUS | 1980 | MEDICALDOC | TOT | 1000HAB | A | 1.85 | NA | NURSE | TOT | 1000HAB | A | 10.33 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1981 | MEDICALDOC | TOT | 1000HAB | A | 1.86 | NA | NURSE | TOT | 1000HAB | A | 9.91 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1982 | MEDICALDOC | TOT | 1000HAB | A | 1.90 | NA | NURSE | TOT | 1000HAB | A | 9.85 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1983 | MEDICALDOC | TOT | 1000HAB | A | 1.95 | NA | NURSE | TOT | 1000HAB | A | 9.87 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1984 | MEDICALDOC | TOT | 1000HAB | A | 1.83 | B | NURSE | TOT | 1000HAB | A | 9.91 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1985 | MEDICALDOC | TOT | 1000HAB | A | 1.91 | NA | NURSE | TOT | 1000HAB | A | 9.55 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1986 | MEDICALDOC | TOT | 1000HAB | A | 2.01 | NA | NURSE | TOT | 1000HAB | A | 10.92 | B | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1987 | MEDICALDOC | TOT | 1000HAB | A | 2.06 | NA | NURSE | TOT | 1000HAB | A | 11.37 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1988 | MEDICALDOC | TOT | 1000HAB | A | 2.10 | NA | NURSE | TOT | 1000HAB | A | 11.60 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1989 | MEDICALDOC | TOT | 1000HAB | A | 2.14 | NA | NURSE | TOT | 1000HAB | A | 11.72 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1990 | MEDICALDOC | TOT | 1000HAB | A | 2.17 | NA | NURSE | TOT | 1000HAB | A | 11.63 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1991 | MEDICALDOC | TOT | 1000HAB | A | 2.33 | B | NURSE | TOT | 1000HAB | A | 12.08 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1992 | MEDICALDOC | TOT | 1000HAB | A | 2.37 | NA | NURSE | TOT | 1000HAB | A | 11.57 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1993 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 11.10 | B | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1994 | MEDICALDOC | TOT | 1000HAB | A | 2.44 | NA | NURSE | TOT | 1000HAB | A | 11.50 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1995 | MEDICALDOC | TOT | 1000HAB | A | 2.48 | NA | NURSE | TOT | 1000HAB | A | 10.84 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1996 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 10.83 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1997 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 10.41 | B | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1998 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 10.30 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 1999 | MEDICALDOC | TOT | 1000HAB | A | 2.45 | NA | NURSE | TOT | 1000HAB | A | 10.17 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2000 | MEDICALDOC | TOT | 1000HAB | A | 2.49 | NA | NURSE | TOT | 1000HAB | A | 10.07 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2001 | MEDICALDOC | TOT | 1000HAB | A | 2.56 | NA | NURSE | TOT | 1000HAB | A | 9.95 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2002 | MEDICALDOC | TOT | 1000HAB | A | 2.56 | NA | NURSE | TOT | 1000HAB | A | 9.94 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2003 | MEDICALDOC | TOT | 1000HAB | A | 2.63 | NA | NURSE | TOT | 1000HAB | A | 9.94 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2004 | MEDICALDOC | TOT | 1000HAB | A | 2.71 | NA | NURSE | TOT | 1000HAB | A | 10.21 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2005 | MEDICALDOC | TOT | 1000HAB | A | 2.78 | NA | NURSE | TOT | 1000HAB | A | 9.76 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2007 | MEDICALDOC | TOT | 1000HAB | A | 3.01 | NA | NURSE | TOT | 1000HAB | A | 10.20 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2008 | MEDICALDOC | TOT | 1000HAB | A | 3.02 | NA | NURSE | TOT | 1000HAB | A | 10.30 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2009 | MEDICALDOC | TOT | 1000HAB | A | 3.12 | NA | NURSE | TOT | 1000HAB | A | 10.18 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2011 | MEDICALDOC | TOT | 1000HAB | A | 3.32 | NA | NURSE | TOT | 1000HAB | A | 10.19 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2012 | MEDICALDOC | TOT | 1000HAB | A | 3.31 | E | NURSE | TOT | 1000HAB | A | 10.22 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2013 | MEDICALDOC | TOT | 1000HAB | A | 3.37 | NA | NURSE | TOT | 1000HAB | A | 11.12 | NA | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2014 | MEDICALDOC | TOT | 1000HAB | A | 3.45 | E | NURSE | TOT | 1000HAB | A | 11.28 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2015 | MEDICALDOC | TOT | 1000HAB | A | 3.51 | E | NURSE | TOT | 1000HAB | A | 11.39 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2016 | MEDICALDOC | TOT | 1000HAB | A | 3.58 | E | NURSE | TOT | 1000HAB | A | 11.57 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2017 | MEDICALDOC | TOT | 1000HAB | A | 3.68 | E | NURSE | TOT | 1000HAB | A | 11.69 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2018 | MEDICALDOC | TOT | 1000HAB | A | 3.75 | E | NURSE | TOT | 1000HAB | A | 11.93 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2019 | MEDICALDOC | TOT | 1000HAB | A | 3.83 | E | NURSE | TOT | 1000HAB | A | 12.23 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2020 | MEDICALDOC | TOT | 1000HAB | A | 3.91 | E | NURSE | TOT | 1000HAB | A | 12.28 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUS | 2021 | MEDICALDOC | TOT | 1000HAB | A | 4.02 | E | NURSE | TOT | 1000HAB | A | 12.81 | E | Oceania | OC | Australia, Commonwealth of | AU | 36 |
| AUT | 1985 | MEDICALDOC | TOT | 1000HAB | A | 2.57 | NA | NURSE | TOT | 1000HAB | A | 3.41 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1986 | MEDICALDOC | TOT | 1000HAB | A | 2.67 | NA | NURSE | TOT | 1000HAB | A | 3.56 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1987 | MEDICALDOC | TOT | 1000HAB | A | 2.70 | NA | NURSE | TOT | 1000HAB | A | 3.69 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1988 | MEDICALDOC | TOT | 1000HAB | A | 2.80 | NA | NURSE | TOT | 1000HAB | A | 3.67 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1989 | MEDICALDOC | TOT | 1000HAB | A | 2.90 | NA | NURSE | TOT | 1000HAB | A | 3.82 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1990 | MEDICALDOC | TOT | 1000HAB | A | 3.01 | NA | NURSE | TOT | 1000HAB | A | 3.91 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1991 | MEDICALDOC | TOT | 1000HAB | A | 3.09 | NA | NURSE | TOT | 1000HAB | A | 4.02 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1992 | MEDICALDOC | TOT | 1000HAB | A | 3.21 | NA | NURSE | TOT | 1000HAB | A | 4.19 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1993 | MEDICALDOC | TOT | 1000HAB | A | 3.30 | NA | NURSE | TOT | 1000HAB | A | 4.43 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1994 | MEDICALDOC | TOT | 1000HAB | A | 3.41 | NA | NURSE | TOT | 1000HAB | A | 4.75 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1995 | MEDICALDOC | TOT | 1000HAB | A | 3.51 | NA | NURSE | TOT | 1000HAB | A | 4.95 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1996 | MEDICALDOC | TOT | 1000HAB | A | 3.58 | NA | NURSE | TOT | 1000HAB | A | 5.06 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1997 | MEDICALDOC | TOT | 1000HAB | A | 3.66 | NA | NURSE | TOT | 1000HAB | A | 5.19 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1998 | MEDICALDOC | TOT | 1000HAB | A | 3.77 | NA | NURSE | TOT | 1000HAB | A | 5.27 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 1999 | MEDICALDOC | TOT | 1000HAB | A | 3.77 | NA | NURSE | TOT | 1000HAB | A | 5.42 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2000 | MEDICALDOC | TOT | 1000HAB | A | 3.85 | NA | NURSE | TOT | 1000HAB | A | 5.55 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2001 | MEDICALDOC | TOT | 1000HAB | A | 3.96 | NA | NURSE | TOT | 1000HAB | A | 5.58 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2002 | MEDICALDOC | TOT | 1000HAB | A | 4.03 | NA | NURSE | TOT | 1000HAB | A | 5.68 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2003 | MEDICALDOC | TOT | 1000HAB | A | 4.11 | NA | NURSE | TOT | 1000HAB | A | 5.68 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2004 | MEDICALDOC | TOT | 1000HAB | A | 4.20 | NA | NURSE | TOT | 1000HAB | A | 5.93 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2005 | MEDICALDOC | TOT | 1000HAB | A | 4.32 | NA | NURSE | TOT | 1000HAB | A | 5.99 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2006 | MEDICALDOC | TOT | 1000HAB | A | 4.45 | NA | NURSE | TOT | 1000HAB | A | 6.14 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2007 | MEDICALDOC | TOT | 1000HAB | A | 4.52 | B | NURSE | TOT | 1000HAB | A | 6.21 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2008 | MEDICALDOC | TOT | 1000HAB | A | 4.59 | NA | NURSE | TOT | 1000HAB | A | 6.36 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2009 | MEDICALDOC | TOT | 1000HAB | A | 4.67 | NA | NURSE | TOT | 1000HAB | A | 6.47 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2010 | MEDICALDOC | TOT | 1000HAB | A | 4.77 | NA | NURSE | TOT | 1000HAB | A | 6.53 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2011 | MEDICALDOC | TOT | 1000HAB | A | 4.82 | NA | NURSE | TOT | 1000HAB | A | 6.62 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2012 | MEDICALDOC | TOT | 1000HAB | A | 4.87 | NA | NURSE | TOT | 1000HAB | A | 6.65 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2013 | MEDICALDOC | TOT | 1000HAB | A | 4.96 | B | NURSE | TOT | 1000HAB | A | 6.69 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2014 | MEDICALDOC | TOT | 1000HAB | A | 5.02 | NA | NURSE | TOT | 1000HAB | A | 6.79 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2015 | MEDICALDOC | TOT | 1000HAB | A | 5.06 | NA | NURSE | TOT | 1000HAB | A | 6.80 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2016 | MEDICALDOC | TOT | 1000HAB | A | 5.11 | NA | NURSE | TOT | 1000HAB | A | 6.77 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2017 | MEDICALDOC | TOT | 1000HAB | A | 5.16 | NA | NURSE | TOT | 1000HAB | A | 6.85 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2018 | MEDICALDOC | TOT | 1000HAB | A | 5.22 | NA | NURSE | TOT | 1000HAB | A | 6.85 | D | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2019 | MEDICALDOC | TOT | 1000HAB | A | 5.29 | NA | NURSE | TOT | 1000HAB | A | 10.30 | B | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2020 | MEDICALDOC | TOT | 1000HAB | A | 5.32 | NA | NURSE | TOT | 1000HAB | A | 10.32 | NA | Europe | EU | Austria, Republic of | AT | 40 |
| AUT | 2021 | MEDICALDOC | TOT | 1000HAB | A | 5.41 | NA | NURSE | TOT | 1000HAB | A | 10.60 | NA | Europe | EU | Austria, Republic of | AT | 40 |
| BEL | 2004 | MEDICALDOC | TOT | 1000HAB | A | 2.87 | NA | NURSE | TOT | 1000HAB | A | 8.79 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2005 | MEDICALDOC | TOT | 1000HAB | A | 2.87 | NA | NURSE | TOT | 1000HAB | A | 9.01 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2006 | MEDICALDOC | TOT | 1000HAB | A | 2.89 | NA | NURSE | TOT | 1000HAB | A | 9.12 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2007 | MEDICALDOC | TOT | 1000HAB | A | 2.91 | NA | NURSE | TOT | 1000HAB | A | 9.24 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2008 | MEDICALDOC | TOT | 1000HAB | A | 2.92 | NA | NURSE | TOT | 1000HAB | A | 9.32 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2009 | MEDICALDOC | TOT | 1000HAB | A | 2.92 | NA | NURSE | TOT | 1000HAB | A | 9.42 | NA | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2010 | MEDICALDOC | TOT | 1000HAB | A | 2.92 | NA | NURSE | TOT | 1000HAB | A | 9.59 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2011 | MEDICALDOC | TOT | 1000HAB | A | 2.92 | NA | NURSE | TOT | 1000HAB | A | 9.81 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2012 | MEDICALDOC | TOT | 1000HAB | A | 2.93 | NA | NURSE | TOT | 1000HAB | A | 10.02 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2013 | MEDICALDOC | TOT | 1000HAB | A | 2.96 | NA | NURSE | TOT | 1000HAB | A | 10.30 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2014 | MEDICALDOC | TOT | 1000HAB | A | 2.98 | NA | NURSE | TOT | 1000HAB | A | 10.58 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2015 | MEDICALDOC | TOT | 1000HAB | A | 3.02 | NA | NURSE | TOT | 1000HAB | A | 10.83 | E | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2016 | MEDICALDOC | TOT | 1000HAB | A | 3.07 | NA | NURSE | TOT | 1000HAB | A | 10.96 | B | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2017 | MEDICALDOC | TOT | 1000HAB | A | 3.08 | NA | NURSE | TOT | 1000HAB | A | 11.22 | NA | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BEL | 2018 | MEDICALDOC | TOT | 1000HAB | A | 3.13 | NA | NURSE | TOT | 1000HAB | A | 11.07 | NA | Europe | EU | Belgium, Kingdom of | BE | 56 |
| BRA | 2007 | MEDICALDOC | TOT | 1000HAB | A | 1.30 | NA | NURSE | TOT | 1000HAB | A | 0.50 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| BRA | 2008 | MEDICALDOC | TOT | 1000HAB | A | 1.41 | NA | NURSE | TOT | 1000HAB | A | 0.56 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| BRA | 2009 | MEDICALDOC | TOT | 1000HAB | A | 1.46 | NA | NURSE | TOT | 1000HAB | A | 0.61 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| BRA | 2010 | MEDICALDOC | TOT | 1000HAB | A | 1.52 | NA | NURSE | TOT | 1000HAB | A | 0.67 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| BRA | 2011 | MEDICALDOC | TOT | 1000HAB | A | 1.50 | NA | NURSE | TOT | 1000HAB | A | 0.73 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| BRA | 2012 | MEDICALDOC | TOT | 1000HAB | A | 1.55 | NA | NURSE | TOT | 1000HAB | A | 0.80 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| BRA | 2013 | MEDICALDOC | TOT | 1000HAB | A | 1.62 | NA | NURSE | TOT | 1000HAB | A | 0.88 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| BRA | 2014 | MEDICALDOC | TOT | 1000HAB | A | 1.71 | NA | NURSE | TOT | 1000HAB | A | 0.97 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
Κατόπιν από αυτόν τον πίνακα κρατήσαμε τις χώρες της Βορείου Αμερικής, γράφοντας:
DocNurcAm <- DocNurcCont[DocNurcCont$Continent_Name == "South America" | DocNurcCont$Continent_Name == "North America", ]| LOCATION | TIME | INDICATOR.x | SUBJECT.x | MEASURE.x | FREQUENCY.x | Value.x | Flag.Codes.x | INDICATOR.y | SUBJECT.y | MEASURE.y | FREQUENCY.y | Value.y | Flag.Codes.y | Continent_Name | Continent_Code | Country_Name | Two_Letter_Country_Code | Country_Number | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 93 | BRA | 2007 | MEDICALDOC | TOT | 1000HAB | A | 1.30 | NA | NURSE | TOT | 1000HAB | A | 0.50 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 94 | BRA | 2008 | MEDICALDOC | TOT | 1000HAB | A | 1.41 | NA | NURSE | TOT | 1000HAB | A | 0.56 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 95 | BRA | 2009 | MEDICALDOC | TOT | 1000HAB | A | 1.46 | NA | NURSE | TOT | 1000HAB | A | 0.61 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 96 | BRA | 2010 | MEDICALDOC | TOT | 1000HAB | A | 1.52 | NA | NURSE | TOT | 1000HAB | A | 0.67 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 97 | BRA | 2011 | MEDICALDOC | TOT | 1000HAB | A | 1.50 | NA | NURSE | TOT | 1000HAB | A | 0.73 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 98 | BRA | 2012 | MEDICALDOC | TOT | 1000HAB | A | 1.55 | NA | NURSE | TOT | 1000HAB | A | 0.80 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 99 | BRA | 2013 | MEDICALDOC | TOT | 1000HAB | A | 1.62 | NA | NURSE | TOT | 1000HAB | A | 0.88 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 100 | BRA | 2014 | MEDICALDOC | TOT | 1000HAB | A | 1.71 | NA | NURSE | TOT | 1000HAB | A | 0.97 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 101 | BRA | 2015 | MEDICALDOC | TOT | 1000HAB | A | 1.73 | NA | NURSE | TOT | 1000HAB | A | 1.03 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 102 | BRA | 2016 | MEDICALDOC | TOT | 1000HAB | A | 1.79 | NA | NURSE | TOT | 1000HAB | A | 1.08 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 103 | BRA | 2017 | MEDICALDOC | TOT | 1000HAB | A | 1.86 | NA | NURSE | TOT | 1000HAB | A | 1.14 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 104 | BRA | 2018 | MEDICALDOC | TOT | 1000HAB | A | 1.90 | NA | NURSE | TOT | 1000HAB | A | 1.21 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 105 | BRA | 2019 | MEDICALDOC | TOT | 1000HAB | A | 1.97 | NA | NURSE | TOT | 1000HAB | A | 1.27 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 106 | BRA | 2020 | MEDICALDOC | TOT | 1000HAB | A | 2.05 | NA | NURSE | TOT | 1000HAB | A | 1.42 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 107 | BRA | 2021 | MEDICALDOC | TOT | 1000HAB | A | 2.15 | NA | NURSE | TOT | 1000HAB | A | 1.55 | NA | South America | SA | Brazil, Federative Republic of | BR | 76 |
| 108 | CAN | 2003 | MEDICALDOC | TOT | 1000HAB | A | 2.10 | NA | NURSE | TOT | 1000HAB | A | 8.51 | NA | North America | NA | Canada | CA | 124 |
| 109 | CAN | 2004 | MEDICALDOC | TOT | 1000HAB | A | 2.13 | NA | NURSE | TOT | 1000HAB | A | 8.51 | NA | North America | NA | Canada | CA | 124 |
| 110 | CAN | 2005 | MEDICALDOC | TOT | 1000HAB | A | 2.16 | NA | NURSE | TOT | 1000HAB | A | 8.73 | NA | North America | NA | Canada | CA | 124 |
| 111 | CAN | 2006 | MEDICALDOC | TOT | 1000HAB | A | 2.18 | NA | NURSE | TOT | 1000HAB | A | 8.84 | NA | North America | NA | Canada | CA | 124 |
| 112 | CAN | 2007 | MEDICALDOC | TOT | 1000HAB | A | 2.22 | NA | NURSE | TOT | 1000HAB | A | 9.04 | NA | North America | NA | Canada | CA | 124 |
| 113 | CAN | 2008 | MEDICALDOC | TOT | 1000HAB | A | 2.26 | NA | NURSE | TOT | 1000HAB | A | 9.16 | NA | North America | NA | Canada | CA | 124 |
| 114 | CAN | 2009 | MEDICALDOC | TOT | 1000HAB | A | 2.34 | NA | NURSE | TOT | 1000HAB | A | 9.32 | NA | North America | NA | Canada | CA | 124 |
| 115 | CAN | 2010 | MEDICALDOC | TOT | 1000HAB | A | 2.38 | NA | NURSE | TOT | 1000HAB | A | 9.37 | NA | North America | NA | Canada | CA | 124 |
| 116 | CAN | 2011 | MEDICALDOC | TOT | 1000HAB | A | 2.46 | NA | NURSE | TOT | 1000HAB | A | 9.29 | NA | North America | NA | Canada | CA | 124 |
| 117 | CAN | 2012 | MEDICALDOC | TOT | 1000HAB | A | 2.51 | NA | NURSE | TOT | 1000HAB | A | 9.40 | NA | North America | NA | Canada | CA | 124 |
| 118 | CAN | 2013 | MEDICALDOC | TOT | 1000HAB | A | 2.57 | NA | NURSE | TOT | 1000HAB | A | 9.54 | NA | North America | NA | Canada | CA | 124 |
| 119 | CAN | 2014 | MEDICALDOC | TOT | 1000HAB | A | 2.62 | NA | NURSE | TOT | 1000HAB | A | 9.81 | NA | North America | NA | Canada | CA | 124 |
| 120 | CAN | 2015 | MEDICALDOC | TOT | 1000HAB | A | 2.67 | NA | NURSE | TOT | 1000HAB | A | 9.91 | NA | North America | NA | Canada | CA | 124 |
| 121 | CAN | 2016 | MEDICALDOC | TOT | 1000HAB | A | 2.69 | NA | NURSE | TOT | 1000HAB | A | 9.96 | NA | North America | NA | Canada | CA | 124 |
| 122 | CAN | 2017 | MEDICALDOC | TOT | 1000HAB | A | 2.73 | NA | NURSE | TOT | 1000HAB | A | 10.00 | NA | North America | NA | Canada | CA | 124 |
| 123 | CAN | 2018 | MEDICALDOC | TOT | 1000HAB | A | 2.78 | NA | NURSE | TOT | 1000HAB | A | 9.95 | NA | North America | NA | Canada | CA | 124 |
| 124 | CAN | 2019 | MEDICALDOC | TOT | 1000HAB | A | 2.78 | NA | NURSE | TOT | 1000HAB | A | 9.98 | NA | North America | NA | Canada | CA | 124 |
| 125 | CAN | 2020 | MEDICALDOC | TOT | 1000HAB | A | 2.77 | NA | NURSE | TOT | 1000HAB | A | 10.06 | NA | North America | NA | Canada | CA | 124 |
| 126 | CAN | 2021 | MEDICALDOC | TOT | 1000HAB | A | 2.81 | E | NURSE | TOT | 1000HAB | A | 10.25 | NA | North America | NA | Canada | CA | 124 |
| 665 | MEX | 1990 | MEDICALDOC | TOT | 1000HAB | A | 0.97 | NA | NURSE | TOT | 1000HAB | A | 1.75 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 666 | MEX | 1991 | MEDICALDOC | TOT | 1000HAB | A | 1.16 | NA | NURSE | TOT | 1000HAB | A | 1.89 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 667 | MEX | 1992 | MEDICALDOC | TOT | 1000HAB | A | 1.31 | NA | NURSE | TOT | 1000HAB | A | 1.99 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 668 | MEX | 1993 | MEDICALDOC | TOT | 1000HAB | A | 1.46 | NA | NURSE | TOT | 1000HAB | A | 2.03 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 669 | MEX | 1994 | MEDICALDOC | TOT | 1000HAB | A | 1.56 | NA | NURSE | TOT | 1000HAB | A | 2.09 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 670 | MEX | 1995 | MEDICALDOC | TOT | 1000HAB | A | 1.65 | NA | NURSE | TOT | 1000HAB | A | 2.13 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 671 | MEX | 1996 | MEDICALDOC | TOT | 1000HAB | A | 1.65 | NA | NURSE | TOT | 1000HAB | A | 2.12 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 672 | MEX | 1997 | MEDICALDOC | TOT | 1000HAB | A | 1.69 | NA | NURSE | TOT | 1000HAB | A | 2.10 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 673 | MEX | 1998 | MEDICALDOC | TOT | 1000HAB | A | 1.71 | NA | NURSE | TOT | 1000HAB | A | 2.14 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 674 | MEX | 1999 | MEDICALDOC | TOT | 1000HAB | A | 1.71 | NA | NURSE | TOT | 1000HAB | A | 2.19 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 675 | MEX | 2000 | MEDICALDOC | TOT | 1000HAB | A | 1.63 | NA | NURSE | TOT | 1000HAB | A | 2.23 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 676 | MEX | 2001 | MEDICALDOC | TOT | 1000HAB | A | 1.52 | NA | NURSE | TOT | 1000HAB | A | 2.23 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 677 | MEX | 2002 | MEDICALDOC | TOT | 1000HAB | A | 1.53 | NA | NURSE | TOT | 1000HAB | A | 2.23 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 678 | MEX | 2003 | MEDICALDOC | TOT | 1000HAB | A | 1.58 | NA | NURSE | TOT | 1000HAB | A | 2.14 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 679 | MEX | 2004 | MEDICALDOC | TOT | 1000HAB | A | 1.66 | NA | NURSE | TOT | 1000HAB | A | 2.12 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 680 | MEX | 2005 | MEDICALDOC | TOT | 1000HAB | A | 1.77 | NA | NURSE | TOT | 1000HAB | A | 2.21 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 681 | MEX | 2006 | MEDICALDOC | TOT | 1000HAB | A | 1.89 | NA | NURSE | TOT | 1000HAB | A | 2.23 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 682 | MEX | 2007 | MEDICALDOC | TOT | 1000HAB | A | 1.93 | NA | NURSE | TOT | 1000HAB | A | 2.29 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 683 | MEX | 2008 | MEDICALDOC | TOT | 1000HAB | A | 1.96 | NA | NURSE | TOT | 1000HAB | A | 2.32 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 684 | MEX | 2009 | MEDICALDOC | TOT | 1000HAB | A | 1.99 | NA | NURSE | TOT | 1000HAB | A | 2.37 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 685 | MEX | 2010 | MEDICALDOC | TOT | 1000HAB | A | 2.00 | NA | NURSE | TOT | 1000HAB | A | 2.42 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 686 | MEX | 2011 | MEDICALDOC | TOT | 1000HAB | A | 2.11 | NA | NURSE | TOT | 1000HAB | A | 2.52 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 687 | MEX | 2012 | MEDICALDOC | TOT | 1000HAB | A | 2.12 | NA | NURSE | TOT | 1000HAB | A | 2.56 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 688 | MEX | 2013 | MEDICALDOC | TOT | 1000HAB | A | 2.16 | NA | NURSE | TOT | 1000HAB | A | 2.62 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 689 | MEX | 2014 | MEDICALDOC | TOT | 1000HAB | A | 2.23 | NA | NURSE | TOT | 1000HAB | A | 2.69 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 690 | MEX | 2015 | MEDICALDOC | TOT | 1000HAB | A | 2.33 | NA | NURSE | TOT | 1000HAB | A | 2.77 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 691 | MEX | 2016 | MEDICALDOC | TOT | 1000HAB | A | 2.34 | NA | NURSE | TOT | 1000HAB | A | 2.87 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 692 | MEX | 2017 | MEDICALDOC | TOT | 1000HAB | A | 2.40 | NA | NURSE | TOT | 1000HAB | A | 2.87 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 693 | MEX | 2018 | MEDICALDOC | TOT | 1000HAB | A | 2.44 | NA | NURSE | TOT | 1000HAB | A | 2.87 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 694 | MEX | 2019 | MEDICALDOC | TOT | 1000HAB | A | 2.44 | NA | NURSE | TOT | 1000HAB | A | 2.85 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 695 | MEX | 2020 | MEDICALDOC | TOT | 1000HAB | A | 2.41 | NA | NURSE | TOT | 1000HAB | A | 2.91 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 696 | MEX | 2021 | MEDICALDOC | TOT | 1000HAB | A | 2.51 | NA | NURSE | TOT | 1000HAB | A | 2.94 | NA | North America | NA | Mexico, United Mexican States | MX | 484 |
| 976 | USA | 1999 | MEDICALDOC | TOT | 1000HAB | A | 2.24 | NA | NURSE | TOT | 1000HAB | A | 10.37 | NA | North America | NA | United States of America | US | 840 |
| 977 | USA | 2000 | MEDICALDOC | TOT | 1000HAB | A | 2.29 | NA | NURSE | TOT | 1000HAB | A | 10.17 | NA | North America | NA | United States of America | US | 840 |
| 978 | USA | 2001 | MEDICALDOC | TOT | 1000HAB | A | 2.35 | NA | NURSE | TOT | 1000HAB | A | 10.18 | NA | North America | NA | United States of America | US | 840 |
| 979 | USA | 2002 | MEDICALDOC | TOT | 1000HAB | A | 2.35 | NA | NURSE | TOT | 1000HAB | A | 10.19 | NA | North America | NA | United States of America | US | 840 |
| 980 | USA | 2003 | MEDICALDOC | TOT | 1000HAB | A | 2.38 | NA | NURSE | TOT | 1000HAB | A | 10.10 | NA | North America | NA | United States of America | US | 840 |
| 981 | USA | 2004 | MEDICALDOC | TOT | 1000HAB | A | 2.39 | NA | NURSE | TOT | 1000HAB | A | 10.30 | NA | North America | NA | United States of America | US | 840 |
| 982 | USA | 2005 | MEDICALDOC | TOT | 1000HAB | A | 2.43 | NA | NURSE | TOT | 1000HAB | A | 10.42 | NA | North America | NA | United States of America | US | 840 |
| 983 | USA | 2006 | MEDICALDOC | TOT | 1000HAB | A | 2.42 | NA | NURSE | TOT | 1000HAB | A | 10.52 | NA | North America | NA | United States of America | US | 840 |
| 984 | USA | 2007 | MEDICALDOC | TOT | 1000HAB | A | 2.43 | NA | NURSE | TOT | 1000HAB | A | 10.58 | NA | North America | NA | United States of America | US | 840 |
| 985 | USA | 2008 | MEDICALDOC | TOT | 1000HAB | A | 2.44 | NA | NURSE | TOT | 1000HAB | A | 10.76 | NA | North America | NA | United States of America | US | 840 |
| 986 | USA | 2009 | MEDICALDOC | TOT | 1000HAB | A | 2.44 | NA | NURSE | TOT | 1000HAB | A | 10.80 | NA | North America | NA | United States of America | US | 840 |
| 987 | USA | 2010 | MEDICALDOC | TOT | 1000HAB | A | 2.43 | NA | NURSE | TOT | 1000HAB | A | 10.94 | NA | North America | NA | United States of America | US | 840 |
| 988 | USA | 2011 | MEDICALDOC | TOT | 1000HAB | A | 2.46 | NA | NURSE | TOT | 1000HAB | A | 11.08 | NA | North America | NA | United States of America | US | 840 |
| 989 | USA | 2012 | MEDICALDOC | TOT | 1000HAB | A | 2.50 | NA | NURSE | TOT | 1000HAB | A | 11.15 | NA | North America | NA | United States of America | US | 840 |
| 990 | USA | 2013 | MEDICALDOC | TOT | 1000HAB | A | 2.56 | NA | NURSE | TOT | 1000HAB | A | 11.14 | NA | North America | NA | United States of America | US | 840 |
| 991 | USA | 2014 | MEDICALDOC | TOT | 1000HAB | A | 2.58 | NA | NURSE | TOT | 1000HAB | A | 11.18 | NA | North America | NA | United States of America | US | 840 |
| 992 | USA | 2015 | MEDICALDOC | TOT | 1000HAB | A | 2.58 | NA | NURSE | TOT | 1000HAB | A | 11.31 | NA | North America | NA | United States of America | US | 840 |
| 993 | USA | 2016 | MEDICALDOC | TOT | 1000HAB | A | 2.59 | NA | NURSE | TOT | 1000HAB | A | 11.63 | NA | North America | NA | United States of America | US | 840 |
| 994 | USA | 2017 | MEDICALDOC | TOT | 1000HAB | A | 2.61 | NA | NURSE | TOT | 1000HAB | A | 11.76 | NA | North America | NA | United States of America | US | 840 |
| 995 | USA | 2018 | MEDICALDOC | TOT | 1000HAB | A | 2.61 | NA | NURSE | TOT | 1000HAB | A | 11.88 | NA | North America | NA | United States of America | US | 840 |
| 996 | USA | 2019 | MEDICALDOC | TOT | 1000HAB | A | 2.64 | NA | NURSE | TOT | 1000HAB | A | 11.97 | NA | North America | NA | United States of America | US | 840 |
| 997 | USA | 2020 | MEDICALDOC | TOT | 1000HAB | A | 2.63 | NA | NURSE | TOT | 1000HAB | A | 11.83 | B | North America | NA | United States of America | US | 840 |
| 998 | USA | 2021 | MEDICALDOC | TOT | 1000HAB | A | 2.67 | NA | NURSE | TOT | 1000HAB | A | 11.98 | NA | North America | NA | United States of America | US | 840 |
Έτσι γράφουμε:
DocNurcEythAm <- ggplot(DocNurcAm, aes(x = Value.y, y = Value.x, color=LOCATION))
DocNurcEythAm + geom_point() + geom_smooth(method='lm')## `geom_smooth()` using formula = 'y ~ x'

Έτσι έχουμε τις ευθείες γραμμικής παλινδρόμησης για κάθε χώρα της Βορείου Αμερικής. Παρατηρούμε την έντονη γραμμική σύνδεση γιατρών-νοσοκόμων σε κάθε χώρα. Ίσως η κοινή ύπαρξη ευθειών ευθείες να αντικατοπτρίζει μια κοινή προσέγγιση στο σύστημα υγείας, η οποία να εξειδικεύεται διαφορετικά σε κάθε περίπτωση, εξ ου και οι διαφορετικές ευθείες.
Προφανώς, η σχέση \([giatroi]=1.9248+0.1308\cdot[nosok]\) κάνει μια εκτίμηση του αριθμού των γιατρών, δεδομένου του αριθμού των νοσοκόμων. Δεν δίνει ακριβή τιμή για το πλήθος των γιατρών. Συνεπώς θα θέλαμε να ξέρουμε πόσο έξω πέφτει η πρόβλεψή μας από την πραγματικότητα. Αυτή τη δουλειά την κάνει το τυπικό σφάλμα εκτίμησης, και για να υπολογιστεί αυτό στην R γράφουμε:
##
## Call:
## lm(formula = giatroi ~ nosok)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.86940 -0.60321 -0.08686 0.57112 2.39898
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.924824 0.055397 34.75 <2e-16 ***
## nosok 0.130831 0.006399 20.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.815 on 950 degrees of freedom
## Multiple R-squared: 0.3056, Adjusted R-squared: 0.3049
## F-statistic: 418.1 on 1 and 950 DF, p-value: < 2.2e-16
οπότε παίρνουμε την απάντηση
Residual standard error: 0.815. Αυτό σημαίνει ότι (βλ. και
ενότητα Απομονωμένα
σημεία) ότι σχεδόν όλες οι μετρήσεις (περίπου το 88.8%) θα είναι σε
απόσταση \(\pm 3\cdot 0.815\) από αυτήν
που προβλέπει η ευθεία γραμμικής παλινδρόμησης.
Δυστυχώς, η ευθεία γραμμικής παλινδρόμησης είναι αρκετά ευαίσθητη στα απομονωμένα σημεία. Η ύπαρξη αρκετών τέτοιων μειώνει πολύ την περιγραφική της δύναμη. Γι’ αυτό το λόγο έχουμε και μια άλλη ευθεία. Την ευθεία ποσοστημοριακής παλινδρόμησης.
| Ευθεία ποσοστημοριακής παλινδρόμησης |
|---|
| Η ευθεία ποσοστημοριακής παλινδρόμησης σχεδιάστηκε να προσεγγίζει τις διαμέσους ενός μεγέθους (πχ του αριθμού των γιατρών) δεδομένης της εκάστοτε τιμής ενός άλλου μεγέθους (πχ του αριθμού των νοσοκόμων). |
Για να πετύχουμε αυτό το στόχο στην R, θα χρησιμοποιήσουμε το πακέτο
quantreg γράφοντας:
και ακολούθως:
## Call:
## rq(formula = giatroi ~ nosok)
##
## Coefficients:
## (Intercept) nosok
## 1.6962080 0.1466408
##
## Degrees of freedom: 952 total; 950 residual
δηλαδή ότι:
\[[giatroi]=1.6962080+0.1466408\cdot[nosok]\]
Το ίδιο μπορούμε να κάνουμε και με άλλα μέτρα θέσης, συγγενικά προς
την διάμεσο, τα ποσοστημόρια (βλ. ενότητα Τεταρτημόρια
– Ποσοστημόρια). Θέλοντας μία ευθεία που να προσεγγίζει π.χ. το
0.15-ποσοστημόριο μπορούμε να συμπληρώσουμε την παράμετρο
tau=, δηλαδή γράφουμε:
## Call:
## rq(formula = giatroi ~ nosok, tau = 0.15)
##
## Coefficients:
## (Intercept) nosok
## 1.0584211 0.1342642
##
## Degrees of freedom: 952 total; 950 residual
δηλαδή αν πχ έχουμε 2.23 νοσοκόμους ανά χίλιους κατοίκους, τότε υπολογίζοντας
\[1.0584211+ 0.1342642\cdot2.23=1.35783\]
βρίσκουμε ότι κάτω από 1.35783 γιατροί ανά χίλιους κατοίκους είναι στο χαμηλότερο 15% αυτών που αντιστοιχούν στους 2.23 νοσοκόμους.
Οι σχέσεις:
\[[giatroi]=1.6962080+0.1466408\cdot[nosok]\]
\[[giatroi]=1.0584211+ 0.1342642\cdot[nosok]\]
που βρήκαμε γράφουμε, ονομάζονται ποσοστημοριακές γραμμικές
παρεμβολές για τ=0.5 (tau=0.5) και τ=0.15
(tau=0.15) αντίστοιχα. Για να σχεδιάσουμε τις ευθείες
ποσοστημοριακής παλινδρόμησης όπως και πριν γράφουμε:
plot(giatroi ~ nosok)
abline(rq(giatroi ~ nosok), col="red")
abline(rq(giatroi ~ nosok, tau = 0.15), col="blue")
Συνολικά ο κώδικας που γράψαμε είναι ο:
rm(list = ls())
DocNurc <- merge(doctorsPer1000,nurcesPer1000,by=c("LOCATION","TIME"))
giatroi <- DocNurc$Value.x
nosok <- DocNurc$Value.y
cor(giatroi,nosok)
lm(giatroi ~ nosok)
plot(giatroi ~ nosok)
abline(lm(giatroi ~ nosok), col = "red")
if(!require(ggplot2)){
install.packages("ggplot2")
library(ggplot2)
}
DocNurcEyth <- ggplot(DocNurc, aes(x = nosok, y = giatroi))
DocNurcEyth + geom_smooth(method='lm')
DocNurcEyth + geom_point() + geom_smooth(method='lm')
names(XoresHpiroi2)[names(XoresHpiroi2) == "Three_Letter_Country_Code"] <- "LOCATION"
DocNurcCont <- merge(DocNurc,XoresHpiroi2,by = "LOCATION")
DocNurcAm <- DocNurcCont[DocNurcCont$Continent_Name == "South America" | DocNurcCont$Continent_Name == "North America", ]
DocNurcEythAm <- ggplot(DocNurcAm, aes(x = Value.y, y = Value.x, color=LOCATION))
DocNurcEythAm + geom_point() + geom_smooth(method='lm')
GramGiatNos <- lm(giatroi ~ nosok)
summary(GramGiatNos)
if(!require(quantreg)){
install.packages("quantreg")
library(quantreg)
}
rq(giatroi ~ nosok)
rq(giatroi ~ nosok, tau = 0.15)
plot(giatroi ~ nosok)
abline(rq(giatroi ~ nosok), col="red")
abline(rq(giatroi ~ nosok, tau = 0.15), col="blue")